Artificial Intelligence and Quantum Computing for Advanced Wireless Networks. Savo G. Glisic

Читать онлайн.
Название Artificial Intelligence and Quantum Computing for Advanced Wireless Networks
Автор произведения Savo G. Glisic
Жанр Программы
Серия
Издательство Программы
Год выпуска 0
isbn 9781119790310



Скачать книгу

T Baseline circled-times upper A right-parenthesis v e c left-parenthesis upper X right-parenthesis comma"/>

      The last equation can be utilized from both directions. Now we can write down

      Update the parameters – backward propagation: First, we need to compute ∂z/∂vec(xl) and z/∂vec(F), where the first term will be used for backward propagation to the previous (l − 1)th layer, and the second term will determine how the parameters of the current (l−th) layer will be updated. Keep in mind that f, F, and wi refer to the same thing (modulo reshaping of the vector or matrix or tensor). Similarly, we can reshape y into a matrix upper Y element-of double-struck upper R Superscript left-parenthesis upper H Super Superscript l plus 1 Superscript upper W Super Superscript l plus 1 Superscript right-parenthesis times upper D; then y, Y, and xl + 1 refer to the same object (again, modulo reshaping).

Alias Size and Meaning
X x l Hl Wl × Dl, the input tensor
F f , w l HW Dl × D, D kernels, each H × W and Dl channels
Y y , x l+1 Hl + 1 Wl + 1 × Dl + 1, the output, Dl + 1 = D
ϕ( x l) Hl + 1 Wl + 1 × HW Dl, the im2row expansion of x l
M Hl + 1 Wl + 1 HW Dl × Hl Wl Dl, the indictor matrix for ϕ( x l)
StartFraction partial-differential z Over partial-differential upper Y EndFraction StartFraction partial-differential z Over partial-differential v e c left-parenthesis bold-italic y right-parenthesis EndFraction Hl + 1 Wl + 1 × Dl + 1, gradient for y
StartFraction partial-differential z Over partial-differential upper F EndFraction StartFraction partial-differential z Over partial-differential v e c left-parenthesis bold-italic f right-parenthesis EndFraction HW Dl × D, gradient to update the convolution kernels
StartFraction partial-differential z Over partial-differential upper X EndFraction StartFraction partial-differential z Over partial-differential v e c left-parenthesis bold-italic x Superscript l Baseline right-parenthesis EndFraction Hl Wl × Dl, gradient for x l, useful for back propagation

      (3.92)StartFraction partial-differential v e c left-parenthesis y right-parenthesis Over partial-differential left-parenthesis v e c left-parenthesis upper F right-parenthesis Superscript upper T Baseline right-parenthesis EndFraction equals StartFraction partial-differential left-parenthesis 
            </div>
      	</div>
  	</div>
  	<hr>
  	<div class=