Numerical Methods in Computational Finance. Daniel J. Duffy

Читать онлайн.
Название Numerical Methods in Computational Finance
Автор произведения Daniel J. Duffy
Жанр Ценные бумаги, инвестиции
Серия
Издательство Ценные бумаги, инвестиции
Год выпуска 0
isbn 9781119719724



Скачать книгу

only if StartAbsoluteValue 1 plus alpha EndAbsoluteValue less-than-or-equal-to StartAbsoluteValue 1 minus alpha EndAbsoluteValue and this implies italic upper R e left-parenthesis StartFraction mu normal upper Delta t Over 2 EndFraction right-parenthesis less-than-or-equal-to 0 (recall that mu is a complex number) where italic upper R e left-parenthesis z right-parenthesis means ‘real part of z’.

      We now discuss convergence issues. We say that a difference scheme has order of accuracy p if:

max StartAbsoluteValue upper X Subscript n Baseline minus upper X left-parenthesis t Subscript n Baseline right-parenthesis EndAbsoluteValue less-than-or-equal-to upper M normal upper Delta t Superscript p Baseline comma for 0 less-than-or-equal-to n less-than-or-equal-to upper N

      where upper X Subscript n Baseline equals approximate solution of (2.32), upper X left-parenthesis t Subscript n Baseline right-parenthesis equals exact solution of (2.31), and upper M is independent of normal upper Delta t.

      We conclude this section by stating a convergence result that allows us to estimate the error between the exact solution of an initial value problem and the solution of a multistep scheme that approximates it. To this end, we consider the n-dimensional autonomous initial value problem:

left-parenthesis IVPI right-parenthesis StartLayout Enlarged left-brace 1st Row y prime equals StartFraction italic d y Over italic d t EndFraction equals f left-parenthesis y right-parenthesis comma in the interval left-bracket a comma b right-bracket comma y left-parenthesis a right-parenthesis equals c 2nd Row where colon 3rd Row y equals left-parenthesis y 1 comma ellipsis comma y Subscript n Baseline right-parenthesis Superscript down-tack Baseline 4th Row f left-parenthesis y right-parenthesis equals left-parenthesis f 1 left-parenthesis y right-parenthesis comma ellipsis comma f Subscript n Baseline left-parenthesis y right-parenthesis right-parenthesis Superscript down-tack Baseline comma c equals left-parenthesis c 1 comma ellipsis comma c Subscript n Baseline right-parenthesis Superscript down-tack Baseline period EndLayout

      By autonomous we mean that f left-parenthesis y right-parenthesis is a function of the dependent variable y only and is thus not of the form f left-parenthesis y comma t right-parenthesis. The latter form is called non-autonomous.

      We approximate this IVP using the multistep method (2.32). We recall:

sigma-summation Underscript j equals 0 Overscript k Endscripts left-parenthesis alpha Subscript j Baseline upper X Subscript n minus j Baseline minus normal upper Delta t beta Subscript j Baseline f left-parenthesis upper X Subscript n minus j Baseline right-parenthesis right-parenthesis equals 0 period

      Theorem 2.2 Assume that the solution normal y of the italic IVPI is p plus 1 times differentiable with double-vertical-bar y Superscript left-parenthesis p plus 1 right-parenthesis Baseline left-parenthesis x right-parenthesis double-vertical-bar less-than-or-equal-to upper K 0 comma p greater-than-or-equal-to 1 and assume that f is differentiable for all y.

      Suppose furthermore that the sequence left-brace upper X Subscript n Baseline right-brace is defined by the equations:

StartLayout 1st Row 1st Column Blank 2nd Column Blank 3rd Column upper X Subscript n Baseline equals y left-parenthesis t Subscript n Baseline right-parenthesis plus normal epsilon Subscript n Baseline comma n equals 0 comma ellipsis comma normal k minus 1 2nd Row 1st Column Blank 2nd Column Blank 3rd Column sigma-summation Underscript j equals 0 Overscript k Endscripts left-parenthesis alpha Subscript j Baseline upper X Subscript n minus j Baseline minus normal upper Delta Subscript t Baseline beta Subscript j Baseline f left-parenthesis upper X Subscript n minus j Baseline right-parenthesis right-parenthesis equals normal epsilon Subscript n comma Baseline k less-than-or-equal-to n less-than-or-equal-to StartFraction b minus a Over normal upper Delta t EndFraction period EndLayout

      If the multistep method is stable and satisfies:

sigma-summation Underscript j equals 1 Overscript k Endscripts left-parenthesis alpha Subscript j Baseline y left-parenthesis t minus j normal upper Delta t right-parenthesis minus normal upper Delta t beta Subscript j Baseline y prime left-parenthesis t minus italic j h right-parenthesis tilde upper C normal upper Delta t Superscript p plus 1 Baseline y Superscript p plus 1 Baseline left-parenthesis t right-parenthesis for-all t element-of left-bracket 0 comma upper T right-bracket

      where C is a positive constant independent of