Numerical Methods in Computational Finance. Daniel J. Duffy

Читать онлайн.
Название Numerical Methods in Computational Finance
Автор произведения Daniel J. Duffy
Жанр Ценные бумаги, инвестиции
Серия
Издательство Ценные бумаги, инвестиции
Год выпуска 0
isbn 9781119719724



Скачать книгу

it has been shown that classical finite difference schemes fail to give acceptable answers when a is large (typically values between 1000 and 10000). We get so-called spurious oscillations, and this problem is also encountered when solving one-factor and multifactor Black–Scholes equations using finite difference methods. We have resolved this problem using so-called exponentially fitted schemes. We motivate the scheme in the present context, and later chapters describe how to apply it to more complicated cases.

      (2.25)sigma equals StartFraction italic a k left-parenthesis theta plus left-parenthesis 1 minus theta right-parenthesis e Superscript negative italic a k Baseline right-parenthesis Over 1 minus e Superscript negative italic a k Baseline EndFraction period

      Having found the fitting factor for the constant coefficient case, we generalise to a scheme for the case (2.1) as follows:

      (2.26)StartLayout 1st Row 1st Column Blank 2nd Column sigma Superscript n comma theta Baseline StartFraction u Superscript n plus 1 Baseline minus u Superscript n Baseline Over k EndFraction plus a Superscript n comma theta Baseline u Superscript n comma theta Baseline equals f Superscript n comma theta Baseline comma n equals 0 comma ellipsis comma upper N minus 1 comma 0 less-than-or-equal-to theta less-than-or-equal-to 1 2nd Row 1st Column Blank 2nd Column u Superscript 0 Baseline equals upper A 3rd Row 1st Column Blank 2nd Column sigma Superscript n comma theta Baseline equals StartFraction a Superscript n comma theta Baseline left-parenthesis theta plus left-parenthesis 1 minus theta right-parenthesis e Superscript minus a Super Superscript n comma theta Superscript k Baseline right-parenthesis Over 1 minus e Superscript minus a Super Superscript n Superscript comma theta Super Subscript k Superscript Baseline EndFraction k period EndLayout

      In practice we work with a number of special cases:

      (2.27)StartLayout 1st Row 1st Column theta equals 0 2nd Column left-parenthesis implicit right-parenthesis 2nd Row 1st Column sigma Superscript n comma o Baseline equals a Superscript n plus 1 Baseline k slash left-parenthesis e Superscript a Super Superscript n plus 1 Superscript k Baseline minus 1 right-parenthesis 2nd Column Blank 3rd Row 1st Column theta equals one half 2nd Column left-parenthesis fitted upper B o x right-parenthesis 4th Row 1st Column theta Superscript n comma one half Baseline equals StartFraction a Superscript n comma one half Baseline k Over 2 EndFraction left-parenthesis StartFraction 1 plus e Superscript minus a Super Superscript n comma one half Superscript k Baseline Over 1 minus e Superscript minus a Super Superscript n comma one half Superscript k Baseline EndFraction right-parenthesis 2nd Column Blank 5th Row 1st Column equals StartFraction a Superscript n comma one half Baseline k Over 2 EndFraction italic hyperbolic cotangent StartFraction a Superscript n comma one half Baseline k Over 2 EndFraction 2nd Column left-parenthesis Il prime in right-parenthesis period EndLayout right-brace

      In the final case italic hyperbolic cotangent left-parenthesis x right-parenthesis is the hyperbolic cotangent function.

      2.4.2 Scalar Non-Linear Problems and Predictor-Corrector Method

      Real-life problems are very seldom linear. In general, we model applications using non-linear IVPs:

      (2.29)