Название | Fundamentals and Methods of Machine and Deep Learning |
---|---|
Автор произведения | Pradeep Singh |
Жанр | Программы |
Серия | |
Издательство | Программы |
Год выпуска | 0 |
isbn | 9781119821885 |
19. Ji, L., Zhi, X., Zhu, S., Fraedrich, K., Probabilistic precipitation forecasting over East Asia using Bayesian model averaging. Weather Forecasting, 34, 2, 377–392, 2019.
20. Liu, Z. and Merwade, V., Separation and prioritization of uncertainty sources in a raster based flood inundation model using hierarchical Bayesian model averaging. J. Hydrol., 578, 124100, 2019.
21. Isupova, O., Li, Y., Kuzin, D., Roberts, S.J., Willis, K., Reece, S., Computer Science, Mathematics, BCCNet: Bayesian classifier combination neural network. arXiv preprint arXiv:1811.12258, 8, 1–5, 2018.
22. Yang, J., Wang, J., Tay, W.P., Using social network information in community-based Bayesian truth discovery. IEEE Trans. Signal Inf. Process. Networks, 5, 3, 525–537, 2019.
23. Yang, J., Wang, J., Tay, W.P., IEEE Transactions on Signal and Information Processing over Networks, Using Social Network Information in Bayesian Truth Discovery. arXiv preprint arXiv:1806.02954, 5, 525–537, 2018.
24. Dadhich, S., Sandin, F., Bodin, U., Andersson, U., Martinsson, T., Field test of neural-network based automatic bucket-filling algorithm for wheel-loaders. Autom. Constr., 97, 1–12, 2019.
25. Leguizamón, S., Jahanbakhsh, E., Alimirzazadeh, S., Maertens, A., Avellan, F., Multiscale simulation of the hydroabrasive erosion of a Pelton bucket: Bridging scales to improve the accuracy. Int. J. Turbomach. Propuls. Power, 4, 2, 9, 2019.
26. Lora, J.M., Tokano, T., d’Ollone, J.V., Lebonnois, S., Lorenz, R.D., A model intercomparison of Titan’s climate and low-latitude environment. Icarus, 333, 113–126, 2019.
27. Chen, J., Yin, J., Zang, L., Zhang, T., Zhao, M., Stacking machine learning model for estimating hourly PM2. 5 in China based on Himawari 8 aerosol optical depth data. Sci. Total Environ., 697, 134021, 2019.
28. Dou, J., Yunus, A.P., Bui, D.T., Merghadi, A., Sahana, M., Zhu, Z., Pham, B.T., Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides, 17, 3, 641–658, 2020.
29. Singh, S.K., Bejagam, K.K., An, Y., Deshmukh, S.A., Machine-learning based stacked ensemble model for accurate analysis of molecular dynamics simulations. J. Phys. Chem. A, 123, 24, 5190–5198, 2019.
30. https://archive.ics.uci.edu/ml/index.html
Email: [email protected]
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.