Fundamentals and Methods of Machine and Deep Learning. Pradeep Singh

Читать онлайн.
Название Fundamentals and Methods of Machine and Deep Learning
Автор произведения Pradeep Singh
Жанр Программы
Серия
Издательство Программы
Год выпуска 0
isbn 9781119821885



Скачать книгу

data is required for training, and so on.

      Figure 2.6 A high-level representation of stacking.

Technique Accuracy Throughput Execution time Response time Error rate Learning rate
Bayes optimal classifier Low Low High Medium Medium Low
Bagging Low Medium Medium High Low Low
Boosting Low Medium High High High Low
Bayesian model averaging High High Medium Medium Low Low
Bayesian model combination High High Low Low Low High
Bucket of models Low Low High Medium Medium Low
Stacking High High Low Low low Medium

      This chapter provides introduction to zonotic diseases, symptoms, challenges, and causes. Ensemble machine learning uses multiple machine learning algorithms to identify the zonotic diseases in early stage itself. Detailed analysis of some of the potential ensemble machine learning algorithms, i.e., Bayes optimal classifier, bootstrap aggregating (bagging), boosting, BMA, Bayesian model combination, bucket of models, and stacking are discussed with respective architecture, advantages, and application areas. From the analysis, it is observed that the efficiency achieved by Bayesian model combination, stacking, and Bayesian model combination are high compared to other ensemble models considered for identification of zonotic diseases.

      1. Allen, T., Murray, K.A., Zambrana-Torrelio, C., Morse, S.S., Rondinini, C., Di Marco, M., Daszak, P., Global hotspots and correlates of emerging zoo-notic diseases. Nat. Commun., 8, 1, 1–10, 2017.

      2. Han, B.A., Schmidt, J.P., Bowden, S.E., Drake, J.M., Rodent reservoirs of future zoonotic diseases. Proc. Natl. Acad. Sci., 112, 22, 7039–7044, 2015.

      3. Salata, C., Calistri, A., Parolin, C., Palu, G., Coronaviruses: a paradigm of new emerging zoonotic diseases. Pathog. Dis., 77, 9, ftaa006, 2019.

      4. Mills, J.N., Gage, K.L., Khan, A.S., Potential influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan. Environ. Health Perspect., 118, 11, 1507–1514, 2010.

      5. Ardabili, S., Mosavi, A., Várkonyi-Kóczy, A.R., Advances in machine learning modeling reviewing hybrid and ensemble methods, in: International Conference on Global Research and Education, 2019, September, Springer, Cham, pp. 215–227.

      6. Gao, X., Shan, C., Hu, C., Niu, Z., Liu, Z., An adaptive ensemble machine learning model for intrusion detection. IEEE Access, 7, 82512–82521, 2019.

      7. Yacchirema, D., de Puga, J.S., Palau, C., Esteve, M., Fall detection system for elderly people using IoT and ensemble machine learning algorithm. Pers. Ubiquitous Comput., 23, 5–6, 801–817, 2019.

      8. Zewdie, G.K., Lary, D.J., Levetin, E., Garuma, G.F., Applying deep neural networks and ensemble machine learning methods to forecast airborne ambrosia pollen. Int. J. Environ. Res. Public Health, 16, 11, 1992, 2019.

      10. Wiens, J. and Shenoy, E.S., Machine learning for healthcare: on the verge of a major shift in healthcare epidemiology. Clin. Infect. Dis., 66, 1, 149–153, 2018.

      11. Bollig, N., Clarke, L., Elsmo, E., Craven, M., Machine learning for syndromic surveillance using veterinary necropsy reports. PLoS One, 15, 2, e0228105, 2020.

      12. Shen, X., Zhang, J., Zhang, X., Meng, J., Ke, C., Sea ice classification using Cryosat-2 altimeter data by optimal classifier–feature assembly. IEEE Geosci. Remote Sens. Lett., 14, 11, 1948–1952, 2017.

      13. Dalton, L.A. and Dougherty, E.R., Optimal classifiers with minimum expected error within a Bayesian framework—Part II: properties and performance analysis. Pattern Recognit., 46, 5, 1288–1300, 2013.

      14. Boughorbel, S., Jarray, F., El-Anbari, M., Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric. PLoS One, 12, 6, e0177678, 2017.

      15. Hassan, A.R., Siuly, S., Zhang, Y., Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating. Comput. Methods Programs Biomed., 137, 247–259, 2016.

      16. Hassan, A.R. and Bhuiyan, M.I.H., Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating. Biomed. Signal Process. Control, 24, 1–10, 2016.

      17.