Усреднение ценности. Простая и надежная стратегия повышения доходности инвестиций на фондовом рынке. Майкл Эдлесон

Читать онлайн.



Скачать книгу

разница между средним арифметическим и средним геометрическим значениями. Простой пример: акции стоимостью $100, которые падают до $50 (‒50 %) в первый год, а затем отскакивают (+100 %) обратно до $100 во второй год. Среднее арифметическое, или просто среднее, этих двух показателей годовых значений составляет +25 %, однако годовой темп роста с учетом сложного процента от начала ($100) до конца ($100) периода явно был нулевым. Средние арифметические значения всегда выше средних геометрических. Это означает, что средняя доходность нескольких периодов всегда будет выше, чем фактическая компаундированная доходность совокупного периода.

iVBORw0KGgoAAAANSUhEUgAAAm4AAAHcCAMAAABYnNbCAAACxFBMVEX////+/f38/Pz7+/v5+fr49/j39vf19PX08/Ty8fLx8PHv7u/u7e/s6+3r6uvp6Orn5ujn5ufl5Obk4+Xj4eTh4OLg3+He3eDd297b2t3a2dzZ19rY1tnW1NfV09XT0tXS0NPPzdDOzM/My87LyczKyMvJx8rIxcjGxMjFw8bEwcTCwMPBv8K/vcG+vMC9ur67ub27uLy5t7q4tbm3tLi1s7e1srazsbWyr7SxrrKvrbGurLCtqq+qp6uopqqnpKimo6ekoaajoaWin6ShnqKfnKGfm6Cdm5+cmZ6bmJ2al5uYlpuXlJmWk5iVkpeTkJaSkJWSj5SQjZKPjJGOi5CNio+MiY6Kh42JhoyJhYuHhYqGg4mGgoiEgYeDgIaCf4SBfoSAfYJ/fIF9e4B8en97eH56d315dnx4dnt3dHp2c3l1cnh0cXdzcHZyb3VxbnNvbXNubHJua3FtanBsaW5raG1qZ2xoZmtnZWpmZGllY2hkYmhjYWZjYGZiX2VgXmNfXWJeXGFdWmBcWl9bWV9aWF5ZV1xZVlxYVVtXVFpWU1lVUlhUUVdTUVZSUFZRT1VQTlRPTVNPTFJOTFFNS1BMSk9LSU9KSE5JR01IRkxHRUtGRUpFRElFQ0hEQkhDQUdBQEZAP0VAPkQ/PUM+PUI9PEE8O0A7Oj87OT85OD04Nzw3Njs2NTs1NDo0NDk0MzgzMjgyMTcxMTYxMDUwLzQvLjQuLjMtLTIsLDEsKzErKzAqKi8qKS8pKC4oKC0nJywmJislJSokJCkjIygiIigiIichISYgISYgICUfHyQeHiMdHiMdHSIcHCEbHCAaGyAZGh8ZGh4YGR0XGBwWFxsVFhoVFRoUFRkTFBgSExcREhYQERUQERQPEBQODxMMDhEMDRAKCw4JCg4JCg0ICQwGBwoFBQcDBAYDBAUDAwQBAgIAAABu6RHgAABBfUlEQVR42u1d+YPV1Nl+ZtgXhVhFUKsTseJW0bhUK4ipxY2qX2Nx5xObYlst1iVURXFr6lY+qZa41Klo8VZFFLegjhtoXFFEiAKizESGEeb9J74fsp3kJvcmd+69zNx7nh+4h5Pz5k3Oeebk5OQ87wE4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODhqAFkW3ISgSrEEB0d1ITlEjgwAOhFZApvg4KgyHFOSCiQAGmmSbFtMgoOj2p0bSYBACuDoACSSwwQHR5Uhkuz+I5MEALYRJHjlcFQdpq0qlg2oBAAomEGC1w1H1aEQEWmA5rgss4IErxuOqj9MHV2SNJJ578ZRB+g2AJiFEmO3Pc8+++z77vkrB8f8k6pFN/+FVAkTHvabO3du17vPcnCs7+gj3WTSBUElBdBIhWTZTILBhpP4g4ADy/pKN6hERDoAGERki2yC042jynSDoKoetURVjiU43TiqTLdM4HTj4HTj4HTj4HTjdOPgdOPgdON04+gD3URZliVON47a001QTYeIiMjSRU43jprSTXLI0hVZlhWt4JDG6cZRU7ppTJemqJxuSTh/CCdSFcdukqKqMh+7pWHEpgM4kapGN9l2x246p1sy5tEJnEjVoptMtiqJolKgAqdbEsZ1vfsbTqRq0c1yPIGyQRKnWwIevEe/hhOpWnQLOjW1L8rRxqXbpM6xf7iXE6lqvZvNe7dSeP5POPspTqRq0U0hS5VEUTb42C0JJ68fimNXcSJV7c1U8b4qGPzNtBitH5wDjN/MiVTFeTdZ1TRF4PNuCZjxDoCWnlbOJD7NWwdcfwcAbJrAmcSneeuA+34PAO8ex5nEp3nrgP/8GgCWnsOZxKd564A3TgCAe6/kTOLTvHXAOhEArv4bZxKf5q0DuocDwHlPcCbxad7aY8Q2AMAJb3Im1X+at0Sg+wal24HrAAA/3sCZVK9pXpeNVulA9w1KtxNfBwAM7kk4NoqzqwK6CWKANDKqqmqbpQPdNyjdfv0f9/e7vYqPTefsqoBuJgVIV2KJpJYOdN+gdPvDPe7v6qOKj/2Vs6sCuhVI1zykfzbVnTKB7huUbnde7/4+c0bRoaH89aGyrwpK+dM4eplQ0A1Kt0cvdH8XzSk6NOkrzq5KXhXM8nI/hcQyge4blG4veSMG7Y6iQ2ft4OyqUYwQ00Rz9m4fHur+nv9Y0aGraS9Or5rQTSQFJcZu+82dO3fb4rmNiO4b3N9FXxYdeofumssRg1UNuumON35LDnQ/durUqZ1XT21ATPvBS1ywueiY1a1N5Yihoxp0c3SgKQPdT9jkJYZtLzr29fLf8YdnLR6mijch13yB7o9e7ac6x8QODeu54VZOr4roZtjQKP2w4DOr6QLdn/asn/rosNihwz695GFOr1rQDU27IuTyf/qp538ZO/SrZ+SXOL043aqJG+b7qX/Ojh26Rp/0KacXp1s18WAwA37jLbFDi2fv1sXpxelWTTx9pp+69KHYodemYvtwzi9Otypi1bF+qmigtmlfrDuQ86syWTMkhdOtGF/t46cmrYkeGbYdWDmF84vvq1BF9Az2U6Oc6JHDPgEen8n5xelWPYztDNPfj4gc+tUzwF+v5fzidKse2KmOzw+OHLpGB35/H+dXRdIYmdMtCSe/HKZfPiVyaPFs8CiDFdLNNDndknB+e5h++GLE5kFw3LucX5xu1cM1jPrl1r94iYMAAJv2BSZs5PyqiG5k27Zt2wKnWwR3XRWmf+t9Ph1vAN6CpEE9nF8V0c0up8RqTro9weynMP0F93dqzxi48yDAlr05wfjDtGowTyp+S/1t75/gzoMkq0853Tjd8mM3AFj7kzBjRLf7e++TX7a48yDAs2dwglU07ybrhsrpxuDyPQE4I5mczrEAgOdPs37hzoMA/+DLxyuim0HkxJeDNzfd7rwmLlB4fzIAYH3b/y5z50GAeXz5eCV000gDJMfmdAvw8JctOGA9m/P0DAAY0jNoRNf+2LQvAFz8CCdYBXSzTABQePTKECt2TsXP3mJz7rnKXxlyzx1ev3fKy5xgFdDNLgCATDw2b/jofPDJ2Eeqq+6F90p64NajPgEAHLyGE6yS5ZWOAEB3+LxbgC0Hdu15xUI2Z8bTAHD9nQBWFJ4BULwqiSPbJ3rHUhWDdLnyb/WNRreeloeuuXUemzP5fQB49FIAZ/hbnnTz5eMVfcTKEFGwqei253eQvnz4UhQtfnv7BACtX812876YyBmWn25l46U2Hd0O/RD4oCuqLe0eAaBLAIDrprpZr07lDKucbjzyuI9TXgJUOiKS9+kkQOgCAPzIi7XVfj5nWOUP0zS+CY4BNFXk8QseA3bbPi6S9/x04IS3I1m338AZVvmrQglhINBUkcev+SuAB6J5//gdcOmjkayzn+MMq/pEiEIKADRT5PG//QnAftG86+4MQ0N72KurhVOs2tO8tiUCzRV5PEnTd94TwDO/iuatPYxTrMofsXQisqXmis37SsIr53HvAGsmRfMWz+EUq+4neokKsmw6QlNFHv9kUnHe+M0Y1DMkmnfRE5xi1V2AZNgABNKaqnfrTBrG9gxpWx/LOmAzp1gFOlNZ09OWVxYKAGDp6WO3tgULFmxfsqCBcOvOpNyu/1vyZTyve+ECjhAf93nxuGEBgKOlRx4fPXny5G8vn9xAOOW7pNxVl9/1eDzvxRsnc4RY2We6yaQLQoHEZoo8Pnl1Uu7Dsx78bTxvjsGfoNXVmapE5MhNFXl8+vKk3Jtufr3ohfXQLzjHqqwzFVRZaK7I45cm9lkX/Wvz+HheSxffqogL//qIebcl5U5Z3Z1QwWdzknG69Q1//31S7v697xVnXsujbuWedxMlACqnm4///E9S7uDeJcWZx7/PSZY3Nq9jAkr6ipCmo9vrJyZmb5yfwMHu0Zxl+ehWcAQABomcbii1KPytpHjZK3/BWcaFf31CJFpDiMePTMi8hUvp864IsQBA5bJmD8NSArfdOiIhc9obnGX56KbyoA0R/Hh9cn7iY3NkN2cZD0nTF6QF3R2amPvdnpxmeQNupa8IaUK6nfnfPKU/PoTTLCvdJPbLlaJyugGA+iD6uPKX0y2FbkSmrsiyLGsFpw8zbw1FtxtvzFN6yW84zTI/TAXVdFyVqaXzN1PEtjHNgrv/wGmWa+wmyrIsCeBjNw//PStP6evv4DTje2L1Ae8ehz6vVuJ043TLiPU/zlP6NC6l53TrC3qG5SktreI043SrHCPzBaXcdwOnWU0CbjUJ3Sbm0x8M5VtjVTfgVpPR7cQ3qrJ+hNMNlQXcajK6/c9/8pVf18Z5xiOPV4wr/p6v/Ns/4zzjyysrxm3z8pUvnMV5xneNqRjGpajhNy9ON74nVgTLp+crP59H6OXLKytH3l1x59zPeZZPZ6ppulr+kdAkge43jc9X/pylnGfV05ma/pxcswS67xmUr/yJr3OeVU9napmqqqrNE+h+wpacBget5Tyr3kSIrbm/zRLo/owXchrs1sV5Vj2dqePSrWkC3d86P/fTdzAnWtV0pmQXCiqaJ9D9y9NR43cLPhFSYiKkUChYVEDTBLrv+lHumZMjOdGqqjOVSWmW3k3MP9u94lROtDyf6AUAQKHEPK9dItD9pPb29h0r2xsEb36d22T9W+0c7e3t7e3rssXmFQHBTF4RIunea2lqoPvBY8eO/fr0sQ2CRTflNvn7/LEcY8eOHTv2hUyreW1HFCxHSnmOaoJgkNQsge7fmpLbZO7f+GM0z9hNMB079ZOpRkSkNEug+0Hdo3LbnP8YJ1qej1iybDuKLIMHusfhn+a3kV/iRONahYow+5H8NofxcNBciVUZKtmhdO8tnGi5FiAZtskD3QMAPjg6v00rl/7lCknjOJYtkMHphuHdQyqw6hzLmZZrAZJmQ+NjN+BnqyuxWnMwZ1qOBUgGNDu+pKg56XZlRQvBzZM403IpsTSbK7EAYMmFlVg9qXCm5VFiqbot2lyJBaw7uHpbtnG6pQ3eqPg7QVPSbcy2lkrM5vGdY/IvQOrLzFuD0E2ubKvN2Ys50/JO82p9+a7QIHSb99eKzE5/hjMt/0csren3VTBPR9+2mRnE6Va+ki1ZlmWdz7vttm0E+raJ1umcbhk3B1c53c55vjK74f42bGPv4nTL0LuJosjpBjw6p0LD7uHu7y//w+mWcexmNz3dWrb+uELL9fu7vws6ON3Kv/6rqqpqNhUMoanpdswn6OPGH698yemWEYpt281NtwV3Vmr5jPuK0Ops53RDhsXjsizLcrN/VXj/xEot/zkbAHDo2q7RnG588XgmjO+seNbsVjecr/rIZ5M43TL0bibx3u2yJRWbnuOGePvXZS9P43TLAIPQ9JsUPTuzYtPB3xwCAF8c8q8LON043bJg6Pd92FfilvsBCE7LnddzuvGHaRbIb/bBeIIzGjjtJfz+Pk43/qqQBQuv64v1U3OAW2/GuUs53cB1pllu4dC+WE/5FHj1VPzsLU63as27NW6g+wkXPbLh476d4tMprdt2x/7rOd36+DD1Y2s1bqD7wRuevHxiH88xZ+nhnzX95qbZZM0WGSV6Ny8sagMHup/1ct/PMdq55SEAnbtzumWYBymkzgL4+tPGDXQ/eEM1toi8f8dlAD6dxOlWHopjS6U7twYOdF+Nzg04hA4B0NyfFTK/KqgOaamdm1Ro5ED31encgGdaADT3Z4W+vyoULJdqjRvovjqdGzAeAJr7s0Kf590kkl26pfduhy9btmzH6mUDEM8tW7Zs2XPb36ziKT/ZsKyJsaGvq5kLpGmaQZrYiGO3twuntFStc3PR3J8VlvWVbpb3oFXTA90PWLoJ3//ugw3XV2nk5qG5Pyssq4pWQyWgAQPdn/scID34VFXP2dyfFapIt8YLdP/gldU/Z3N/VshKN6H093mxIQPdrz+kBidt6s8K2egmWUSOhiZbEXLAN7U4a1N/Vsi4F72tqoW0vegblm6z22tx1qb+rFCFvegblm5LL6rFWZv6s0IV9qJvVLq1du5di9M29WeFHHvRN3Yo6AnsfwYDwFGf1sRRU6sV8uxFbzXy2O2KMMbzkOu6ZgO4rja8aOrPClXYi74x6Lbkj35q2trl0z4zhuLV2oT+a+rPCpnopuuSbqiNrTP9apn7u/dS+wxg9NOr2raNqomjpv6skCN6ZUPTbYLjuAFAHjGGA0DLvO43a+OpqT8rcLq5+J9n3zsRAEY5e3k5p/6hRq6a+bNCjlDQDa2iv/faO24GgMtqH5K+mT8rcBW9i1UnnPwWALxzWs1dvXwKpxuaW0U/vHvosG2jgYO/qf3GB49cxOnWxxUhA51uP38XeOUM4G+3197X7RqnG5p7RYh2F3Dt3zH4uwNr7+uKhZxuTb4i5LmzgSPXYMYbdfB19lOcbmjuFSGd44CWzgnLL66Dr+Pf4XRDU68I+cl6AHjyuq4RdXC23wZONzT1ipBL/w0Al/X8sx7OhvRwuqGpV4QYvwOA/emY+jy5x3K6NfWKkM8PBwA8XR9vHx/K6Vbm3bShV4SMdVoBAHvXx91ShdOtmTcpOu3lurq77m+cbmjib6a33VxXd9Ne99S4LZxuzbivwmun1NXdmG0uz558ahSnW/PtGjOou87b8K0/CADwxQufus+LH+/F6VYB3QZooPtjPqyzw6UzAWBUd6u69VQMOuv5HfdyumV9mKruuA4DN9D9tfWW4l13NwD8bBVwwjePb3774jZnLKdbxlcFQVVV1TEHcKD7F86ss0P3XeGKBwBMWHAIgEfncbrlWF6pO8LADXQ/yBlTZ4/uu8JDlwcZh20ZyukWssl0IaDEtjEDNljqMVbdXa4/CMD7zPj2hf/ldIvQjex0utmONIAD3V97T91dLp0JDO4eFmZM/ayF042FVShBR4u0gRvovu5DN/dd4YhICJL3T+d0y641VUhM790md3R07FzT0U/x5s536u7z4+87Or7YyuZ8/n1HM2BjRrqJTqHkcdIG6thtFwzdMGZbC+6by+YM/voY3rsxEyFO2tpKSQEgDNxA97tg6AasPwhvTI3k/HEpp5v/qNQ0LXUWRHMUiAVHGKiB7nfB0A1YOhPfR6dfRnWPbGSe7Xdqa5V0pgUicmQM0ED39Z91c98V2uxYVofcwGxrfeOrr24YXx2daXF8+wEU6H5XDN2AKa+fG186vOD2BqbbX15rnfxg1zPjm15nukuGbtjt+9tujGVNHVh6wFl/zFH4uK37Ahh5ybCm15nukqEbsO6LM2I5w+ODt9Z+TLYhi9Z17p+59OgNv+I60104dAOeoH1QZvC2akG/XSey95vP7jZveYkCd71134WThp9008qV5w0FHlvMdaYujrV2jd8/dxZlzY8O3sRvFnf2U8Idu2l+C4asOTf94bll2lWPf77jndvl/3l1611/+mIk15m6mHfPrvE7pViNc1J08HbVYuy/2HlI6ods23omAJy4OS0M5+CPZ4b/abvt66PAdabeE+uXu8bvbncWZQ3dFhm8vXImgHHXr/9AHd6/qmy/b7xh5+J/FL1TugS89kVwnWkSJn+9qwbkPy3OWskO3kZvc+OVtExdrfarKhv54TVeasyW4+J/vOsmATigq43rTBPxcH8K7XcTO3g7e4WfOu3NXXdJ5+8bz2l5+tEgfd6nJ0WWhZ7w5azOGcAL13OdaSLGOnv2o6uJDN4e+X0wEtp6wK66ogt/eCyeddtbDMNuXN298tpxwX//ewWkjQuUTwdznWki5rb3p6thB28t34Ycu/8vdXC+z/y5RdHGLtw0ectR0Szlq+gf6OjpD3YVTnHXhrZ1jgT2emPnz8B1pkloWX9sxpJ/b6vH9TCDt6PXhNnHf15rx62nL+tatHRLjHAXbpqIy1+LZI3fOrnIeNTs9zacCgD33QEAg2eA0y0Rv3w/Y8FT6OOR9R283cx+MVzvtvGE3Wrkd+bGVbNGAoc