Название | Bioprospecting of Microorganism-Based Industrial Molecules |
---|---|
Автор произведения | Группа авторов |
Жанр | Биология |
Серия | |
Издательство | Биология |
Год выпуска | 0 |
isbn | 9781119717263 |
References
1 1 Sar, P., Ghosh, A., Scarso, A., and Saha, B. (2019). Surfactant for better tomorrow: applied aspect of surfactant aggregates from laboratory to industry. Research on Chemical Intermediates 45: 6021–6041.
2 2 Santos, D.K.F., Rufino, R.D., Luna, J.M. et al. (2016). Biosurfactants: multifunctional biomolecules of the 21st century. International Journal of Molecular Sciences 17: 401.
3 3 Ontiveros, J.F., Pierlot, C.M., Catté, M. et al. (2014). A simple method to assess the hydrophilic and lipophilic balance of food and cosmetic surfactants using the phase inversion temperature of C10E4/n‐octane/water emulsions. Colloids and Surfaces, A: Physicochemical and Engineering Aspects 458: 32–39.
4 4 Henkel, M. and Hausmann, R. (2019). Diversity and classification of microbial surfactants. In: Biobased Surfactants, 2e (eds. D. Hayes, D. Solaiman and R. Ashby), 41–63. Elsevier.
5 5 Vijayakumar, S. and Saravanan, V. (2015). Biosurfactants‐types, sources, and applications. Research Journal of Microbiology 10: 181–192.
6 6 Dhanarajan, G. and Sen, R. (2014). Cost analysis of biosurfactant production from a scientist’s perspective. In: Biosurfactants: Production and Utilization‐Processes, Technologies, and Economics, Surfactant Science, vol. 159 (eds. N. Kosaric and F. Vardar‐Sujan), 153–160. CRC Press.
7 7 Konishi, M., Yoshida, Y., and Horiuchi, J.‐i. (2015). Efficient production of sophorolipids by Starmerella bombicola using a corncob hydrolysate medium. Journal of Bioscience and Bioengineering 119: 317–322.
8 8 Funston, S.J., Tsaousi, K., Rudden, M. et al. (2016). Characterising rhamnolipids production in Burkholderia thailandesis E264, a non‐pathogenic producer. Applied Microbiology and Biotechnology 100: 7945–7956.
9 9 Delbeke, E.I.P., Movsisyan, M., Van Geem, K.M., and Stevens, C.V. (2016). Chemical and enzymatic modification of sophorolipids. Green Chemistry 18: 76–104.
10 10 Sharma, M., Patel, S.N., Lata, K. et al. (2016). A novel approach of integrated bioprocessing of cane molasses for the production of prebiotic and functional bioproducts. Bioresource Technology 219: 311–318.
11 11 Lata, K., Sharma, M., Patel, S.N. et al. (2018). An integrated bio‐process for production of functional biomolecules utilizing raw and by‐products from dairy and sugarcane industries. Bioprocess and Biosystems Engineering 41: 1121–1131.
12 12 Perfumo, A., Banat, I.M., and Marchant, R. (2018). Going green and cold: biosurfactants from low‐temperature environments to biotechnology applications. Trends in Biotechnology 36: 277–289.
13 13 Fracchia, L., Ceresa, C., Franzetti, A. et al. (2015). Industrial application of biosurfactants. Surfactant Science Series 159: 245–267.
14 14 Patowary, K., Patowary, R., Deka, S., and Kalita, M.C. (2017). Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon. Frotiers in Microbiology 8: 279.
15 15 Chaprão, M.J., Ferreira, I.N.S., Correa, P.F. et al. (2015). Application of bacterial and yeast biosurfactants for enhanced removal and biodegradation of motor oil from contaminated sand. Electronic Journal of Biotechnology 18: 471–479.
16 16 Nitschke, M. and Sousa Silva, S. (2018). Recent food applications of microbial surfactants. Critical Reviews in Food Science and Nutrition 58: 631–638.
17 17 Diaz de Rienzo, M.A., Banat, I.M., Dolamn, B. et al. (2015). Sophorolipid biosurfactants: possible uses as antibacterial and antibiofilm agent. New Biotechology 32: 720–726.
18 18 Jezierska, S., Claus, S., and Van Bogaert, I. (2018). Yeast glycolipid biosurfactants. FEBS Letters 592 (8): 1312–1329.
19 19 Mimee, B., Labbé, C., and Bélanger, R.R. (2009). Catabolism of flocculosin, an antimicrobial metabolite produced by Pseudozyma flocculosa. Glycobiology 19 (9): 995–1001.
20 20 Charlesworth, J.C. and Burns, B.P. (2015). Untapped resources: biotechnological potential of peptides and secondary metabolites in archaea. Archaea 282035: 7.
21 21 Abdel‐Mawgoud, A.M. and Stephanopoulos, G. (2018). Simple glycolipids of microbes: chemistry, biological activity and metabolic engineering. Synthetic and Systems Biotechnology 3 (1): 3–19.
22 22 Sharma, D., Saharan, B.S., and Kapil, S. (2016). Biosurfactants of Lactic Acid Bacteria, 86. Switzerland: Springer.
23 23 Satpute, S.K., Kulkarni, G.R., Banpurkar, A.G. et al. (2016). Biosurfactant/s from Lactobacilli species: Properties, challenges and potential biomedical applications. Journal of Basic Microbiology 56 (11): 1140–1158.
24 24 Mata‐Sandoval, J.C., Karns, J., and Torrents, A. (2001). Effect of nutritional and environmental conditions on the production and composition of rhamnolipids by P. aeruginosa UG2. Microbiological Research 155 (4): 249–256.
25 25 Kaskatepe, B. and Yildiz, S. (2016). Rhamnolipid biosurfactants produced by Pseudomonas species. Brazilian Archives of Biology and Technology 59.
26 26 Chong, H. and Li, Q. (2017). Microbial production of rhamnolipids: opportunities, challenges and strategies. Microbial Cell Factories 16 (1): 137.
27 27 Fazli, R.R. and Hertadi, R. (2019). Production and characterization of rhamnolipids from bioconversion of palm oil mill effluent by the halophilic bacterium Pseudomonas stutzeri BK‐AB12. Environmental Progress & Sustainable Energy 38 (3): e13007.
28 28 Tan, Y.N. and Li, Q. (2018). Microbial production of rhamnolipids using sugars as carbon sources. Microbial Cell Factories 17 (1): 89.
29 29 Jadhav, M., Kalme, S., Tamboli, D., and Govindwar, S. (2011). Rhamnolipid from Pseudomonas desmolyticum NCIM‐2112 and its role in the degradation of Brown 3REL. Journal of Basic Microbiology 51 (4): 385–396.
30 30 Calvo, C., Toledo, F., and González‐López, J. (2004). Surfactant activity of a naphthalene degrading Bacillus pumilus strain isolated from oil sludge. Journal of Biotechnology 109 (3): 255–262.
31 31 Vasileva‐Tonkova, E. and Gesheva, V. (2005). Glycolipids produced by Antarctic Nocardioides sp. during growth on n‐paraffin. Process Biochemistry 40 (7): 2387–2391.
32 32 Nalini, S. and Parthasarathi, R. (2018). Optimization of rhamnolipid biosurfactant production from Serratia rubidaea SNAU02 under solid‐state fermentation and its biocontrol efficacy against Fusarium wilt of eggplant. Annals of Agrarian Science 16 (2): 108–115.
33 33 Dong, H., Xia, W., Dong, H. et al. (2016). Rhamnolipids produced by indigenous Acinetobacter junii from petroleum reservoir and its potential in enhanced oil recovery. Frontiers in Microbiology 7: 1710.
34 34 Hošková, M., Schreiberová, O., Ježdík, R. et al. (2013). Characterization of rhamnolipids produced by non‐pathogenic Acinetobacter and Enterobacter bacteria. Bioresource Technology 130: 510–516.
35 35 Joy, S., Rahman, P.K., Khare, S.K., and Sharma, S. (2019). Production and characterization of glycolipid biosurfactant from Achromobacter sp.(PS1) isolate using one‐factor‐at‐a‐time (OFAT) approach with feasible utilization of ammonia‐soaked lignocellulosic pretreated residues. Bioprocess and Biosystems Engineering 42 (8): 1301–1315.
36 36 Christova, N., Tuleva, B., Lalchev, Z. et al. (2004). Rhamnolipid biosurfactants produced by Renibacterium salmoninarum 27BN during growth on n‐hexadecane. Zeitschrift für Naturforschung. Section C 59 (1‐2): 70–74.
37 37 Yan, X., Sims, J., Wang, B., and Hamann, M.T. (2014). Marine actinomycete Streptomyces sp. ISP2‐49E, a new source of rhamnolipid. Biochemical Systematics and Ecology 55: 292–295.
38 38 Kalyani, A.L.T., Naga Sireesha, G., Aditya, A. et al. (2014). Production optimization of rhamnolipid biosurfactant by Streptomyces coelicoflavus (NBRC 15399T) using Plackett‐Burman design. European Journal of Biotechnology and Bioscience 1 (5): 07–13.
39 39 Lee, S.‐C., Lee, S.‐J., Kim, S.‐H. et al. (2008). Characterization of new biosurfactant produced by Klebsiella sp. Y6‐1 isolated