A Comprehensive Reference for Electrochemical Engineering Theory and Application From chemical and electronics manufacturing, to hybrid vehicles, energy storage, and beyond, electrochemical engineering touches many industries—any many lives—every day. As energy conservation becomes of central importance, so too does the science that helps us reduce consumption, reduce waste, and lessen our impact on the planet. Electrochemical Engineering provides a reference for scientists and engineers working with electrochemical processes, and a rigorous, thorough text for graduate students and upper-division undergraduates. Merging theoretical concepts with widespread application, this book is designed to provide critical knowledge in a real-world context. Beginning with the fundamental principles underpinning the field, the discussion moves into industrial and manufacturing processes that blend central ideas to provide an advanced understanding while explaining observable results. Fully-worked illustrations simplify complex processes, and end-of chapter questions help reinforce essential knowledge. With in-depth coverage of both the practical and theoretical, this book is both a thorough introduction to and a useful reference for the field. Rigorous in depth, yet grounded in relevance, Electrochemical Engineering: Introduces basic principles from the standpoint of practical application Explores the kinetics of electrochemical reactions with discussion on thermodynamics, reaction fundamentals, and transport Covers battery and fuel cell characteristics, mechanisms, and system design Delves into the design and mechanics of hybrid and electric vehicles, including regenerative braking, start-stop hybrids, and fuel cell systems Examines electrodeposition, redox-flow batteries, electrolysis, regenerative fuel cells, semiconductors, and other applications of electrochemical engineering principles Overlapping chemical engineering, chemistry, material science, mechanical engineering, and electrical engineering, electrochemical engineering covers a diverse array of phenomena explained by some of the important scientific discoveries of our time. Electrochemical Engineering provides the critical understanding required to work effectively with these processes as they become increasingly central to global sustainability.
The Essential Reference for the Field, Featuring Protocols, Analysis, Fundamentals, and the Latest Advances Impedance Spectroscopy: Theory, Experiment, and Applications provides a comprehensive reference for graduate students, researchers, and engineers working in electrochemistry, physical chemistry, and physics. Covering both fundamentals concepts and practical applications, this unique reference provides a level of understanding that allows immediate use of impedance spectroscopy methods. Step-by-step experiment protocols with analysis guidance lend immediate relevance to general principles, while extensive figures and equations aid in the understanding of complex concepts. Detailed discussion includes the best measurement methods and identifying sources of error, and theoretical considerations for modeling, equivalent circuits, and equations in the complex domain are provided for most subjects under investigation. Written by a team of expert contributors, this book provides a clear understanding of impedance spectroscopy in general as well as the essential skills needed to use it in specific applications. Extensively updated to reflect the field’s latest advances, this new Third Edition: Incorporates the latest research, and provides coverage of new areas in which impedance spectroscopy is gaining importance Discusses the application of impedance spectroscopy to viscoelastic rubbery materials and biological systems Explores impedance spectroscopy applications in electrochemistry, semiconductors, solid electrolytes, corrosion, solid state devices, and electrochemical power sources Examines both the theoretical and practical aspects, and discusses when impedance spectroscopy is and is not the appropriate solution to an analysis problem Researchers and engineers will find value in the immediate practicality, while students will appreciate the hands-on approach to impedance spectroscopy methods. Retaining the reputation it has gained over years as a primary reference, Impedance Spectroscopy: Theory, Experiment, and Applications once again present a comprehensive reference reflecting the current state of the field.
This book emphasizes the use of four complex plane formalisms (impedance, admittance, complex capacitance, and modulus) in a simultaneous fashion. The purpose of employing these complex planes for handling semicircular relaxation using a single set of measured impedance data (ac small-signal electrical data) is highly underscored. The current literature demonstrates the importance of template version of impedance plot whereas this book reflects the advantage of using concurrent four complex plane plots for the same data. This approach allows extraction of a meaningful equivalent circuit model attributing to possible interpretations via potential polarizations and operative mechanisms for the investigated material system. Thus, this book supersedes the limitations of the impedance plot, and intends to serve a broader community of scientific and technical professionals better for their solid and liquid systems. This book addresses the following highlighted contents for the measured data but not limited to the:– (1) Lumped Parameter/Complex Plane Analysis (LP/CPA) in conjunction with the Bode plots; (2) Equivalent circuit model (ECM) derived from the LP/CPA; (3) Underlying Operative Mechanisms along with the possible interpretations; (4) Ideal (Debye) and non-ideal (non-Debye) relaxations; and (5) Data-Handling Criteria (DHC) using Complex Nonlinear Least Squares (CNLS) fitting procedures.
Since the first publication of the book, a surge of interest in physicochemical hydrodynamics (PCH) has produced a flurry of advances in the field, as researchers became aware of the subject’s practical applications across numerous disciplines. The Second Edition of Ronald F. Probstein’s Physicochemical Hydrodynamics is significantly expanded and revised to provide increased coverage of the field. All of the material was supplemented with problems for students, and a solutions manual is available for instructors. The continued demand for the book necessitates that the Second Edition be reprinted in paperback so that it may be more widely available to students and practitioners. This highly respected book emphasizes rational theory and its consequences to demonstrate the underlying unity of PCH, which allows diverse phenomena to be described in physically and mathematically similar ways. Physicochemical Hydrodynamics communicates the fundamentals while, at the same time, conveying the importance of applications of PCH to a variety of fields, including: mechanical, chemical, and environmental engineering; materials science, biotechnology, microfluidics, and fluid aspects of nanotechnology. Numerous illustrations, analogies, and examples highlight the text and help to clarify and solidify students’ and professionals’ understanding of the material.
A skillful balance of theoretical considerations and practical know-how Backed by a team of expert contributors, the Second Edition of this highly acclaimed publication brings a solid understanding of impedance spectroscopy to students, researchers, and engineers in physical chemistry, electrochemistry, and physics. Starting with general principles, the book moves on to explain in detail practical applications for the characterization of materials in electrochemistry, semiconductors, solid electrolytes, corrosion, solid-state devices, and electrochemical power sources. The book covers all of the topics needed to help readers identify whether impedance spectroscopy may be an appropriate method for their particular research problem. The book helps readers quickly grasp how to apply their new knowledge of impedance spectroscopy methods to their own research problems through the use of unique features such as: * Step-by-step instructions for setting up experiments and then analyzing the results * Theoretical considerations for dealing with modeling, equivalent circuits, and equations in the complex domain * Best measurement methods for particular systems and alerts to potential sources of errors * Equations for the most widely used impedance models * Figures depicting impedance spectra of typical materials and devices * Extensive references to the scientific literature for more information on particular topics and current research This Second Edition incorporates the results of the last two decades of research on the theories and applications of impedance spectroscopy. Most notably, it includes new chapters on batteries, supercapacitors, fuel cells, and photochromic materials. A new chapter on commercially available measurement systems reflects the emergence of impedance spectroscopy as a mainstream research tool. With its balanced focus on both theory and practical problem solving, Impedance Spectroscopy: Theory, Experiment, and Applications, Second Edition serves as an excellent graduate-level textbook as well as a hands-on guide and reference for researchers and engineers.
The new edition of the cornerstone text on electrochemistry Spans all the areas of electrochemistry, from the basics of thermodynamics and electrode kinetics to transport phenomena in electrolytes, metals, and semiconductors. Newly updated and expanded, the Third Edition covers important new treatments, ideas, and technologies while also increasing the book's accessibility for readers in related fields. Rigorous and complete presentation of the fundamental concepts In-depth examples applying the concepts to real-life design problems Homework problems ranging from the reinforcing to the highly thought-provoking Extensive bibliography giving both the historical development of the field and references for the practicing electrochemist.
Topics in Stereochemistry, Materials-Chirality provides comprehensive information on the stereochemistry of materials. Coverage includes the chirality of materials and the important role stereochemistry plays in the physical properties of polymers, liquid crystals, and other materials.
This book serves as a supplement to The Pyrazines, Volume 41 of the Chemistry of Heterocyclic Compounds series. It covers the literature published between 1979 and 2000, and–together with Volume 41–provides a complete, up-to-date reference for heterocyclic chemists. It emphasizes practical approaches to pyrazine chemistry, offers a full appendix of all simple pyrazines up to 2000, and features detailed coverage of the following topics: Systematic descriptions of all primary synthetic routes to pyrazines Other preparative routes to alkylpyrazines and their reactions Halogenopyrazines and their synthetic uses Oxypyrazines and trivial names for pharmaceutical or agrochemical pyrazines Thiopyrazines Amino-, nitro-, and other similar pyrazines and their reactions Pyrazinecarboxylic acids and their derivatives The supplement features extensive cross-references to the original volume and uses chemical nomenclature as per current IUPAC recommendations
A practical, easily accessible guide for bench-top chemists, this book focuses on accurately applying computational chemistry techniques to everyday chemistry problems. Provides nonmathematical explanations of advanced topics in computational chemistry. Focuses on when and how to apply different computational techniques. Addresses computational chemistry connections to biochemical systems and polymers. Provides a prioritized list of methods for attacking difficult computational chemistry problems, and compares advantages and disadvantages of various approximation techniques. Describes how the choice of methods of software affects requirements for computer memory and processing time.
The subject of this book – intermolecular interactions – is as important in physics as in chemistry and molecular biology. Intermolecular interactions are responsible for the existence of liquids and solids in nature. They determine the physical and chemical properties of gases, liquids, and crystals, the stability of chemical complexes and biological compounds. In the first two chapters of this book, the detailed qualitative description of different types of intermolecular forces at large, intermediate and short-range distances is presented. For the first time in the monographic literature, the temperature dependence of the dispersion forces is discussed, and it is shown that at finite temperatures the famous Casimir-Polder asymptotic formula is correct only at narrow distance range. The author has aimed to make the presentation understandable to a broad scope of readers without oversimplification. In Chapter 3, the methods of quantitative calculation of the intermolecular interactions are discussed and modern achievements are presented. This chapter should be helpful for scientists performing computer calculations of many-electron systems. The last two chapters are devoted to the many-body effects and model potentials. More than 50 model potentials exploited for processing experimental data and computer simulation in different fields of physics, chemistry and molecular biology are represented. The widely used global optimisation methods: simulated annealing, diffusion equation method, basin-hopping algorithm, and genetic algorithm are described in detail. Significant efforts have been made to present the book in a self-sufficient way for readers. All the necessary mathematical apparatus, including vector and tensor calculus and the elements of the group theory, as well as the main methods used for quantal calculation of many-electron systems are presented in the appendices.