Thermal Convection – Patterns, Stages of Evolution and Stability Behavior provides the reader with an ensemble picture of the subject, illustrating the state-of-the-art and providing the researchers from universities and industry with a basis on which they are able to estimate the possible impact of a variety of parameters. Unlike earlier books on the subject, the heavy mathematical background underlying and governing the behaviors illustrated in the text are kept to a minimum. The text clarifies some still unresolved controversies pertaining to the physical nature of the dominating driving force responsible for asymmetric/oscillatory convection in various natural phenomena and/or technologically important processes and can help researchers in elaborating and validating new, more complex models, in accelerating the current trend towards predictable and reproducible natural phenomena and in establishing an adequate scientific foundation to industrial processes. Thermal Convection – Patterns, Stages of Evolution and Stability Behavior is intended as a useful reference guide for specialists in disciplines such as the metallurgy and foundry field and researchers and scientists who are now coordinating their efforts to improve the quality of semiconductor or macromolecular crystals. The text may also be of use to organic chemists and materials scientists, atmosphere and planetary physicists, as well as an advanced level text for students taking part in courses on the physics of fluids, fluid mechanics, the behavior and evolution of non-linear systems, environmental phenomena and materials engineering.
Supramolecular chemistry is ‘chemistry beyond the molecule’ – the chemistry of molecular assemblies and intermolecular bonds. It is one of today’s fastest growing disciplines, crossing a range of subjects from biological chemistry to materials science; and from synthesis to spectroscopy. Supramolecular Chemistry is an up-to-date, integrated textbook that tells the newcomer to the field everything they need to know to get started. Assuming little in the way of prior knowledge, the book covers the concepts behind the subject, its breadth, applications and the latest contemporary thinking in the area. It also includes coverage of the more important experimental and instrumental techniques needed by supramolecular chemists. The book has been thoroughly updated for this second edition. In addition to the strengths of the very popular first edition, this comprehensive new version expands coverage into a broad range of emerging areas. Clear explanations of both fundamental and nascent concepts are supplemented by up-to-date coverage of exciting emerging trends in the literature. Numerous examples and problems are included throughout the book. A system of “key references” allows rapid access to the secondary literature, and of course comprehensive primary literature citations are provided. A selection of the topics covered is listed below. Cation, anion, ion-pair and molecular host-guest chemistry Crystal engineering Topological entanglement Clathrates Self-assembly Molecular devices Dendrimers Supramolecular polymers Microfabrication Nanoparticles Chemical emergence Metal-organic frameworks Gels Ionic liquids Supramolecular catalysis Molecular electronics Polymorphism Gas sorption Anion-pinteractions Nanochemistry Supramolecular Chemistry is a must for both students new to the field and for experienced researchers wanting to explore the origins and wider context of their work. Review: «At just under 1000 pages, the second edition of Steed and Atwood's Supramolecular Chemistry is the most comprehensive overview of the area available in textbook form…highly recommended.» Chemistry World, August 2009
Have you ever wished you could speed up your organic syntheses without losing control of the reaction? Flash Chemistry is a new concept which offers an integrated scheme for fast, controlled organic synthesis. It brings together the generation of highly reactive species and their reactions in Microsystems to enable highly controlled organic syntheses on a preparative scale in timescales of a few seconds or less. Flash Chemistry: Fast Organic Synthesis in microsystems is the first book to describe this exciting new technique, with chapters covering: an introduction to flash chemistry reaction dynamics: how fast is the act of chemical transformation, what is the rate of reaction, and what determines the selectivity of a reaction? examples of why flash chemistry is needed: the rapid construction of chemical libraries, rapid synthesis of radioactive PET probes, and on-demand rapid synthesis in industry the generation of highly reactive species through thermal, microwave, chemical, photochemical, and electrochemical activation microsystems: What are microsystems and how are they made? Why is size so important? What are the characteristic features of microsystems? conduction and control of extremely fast reactions using microsystems applications of flash chemistry in organic synthesis polymer synthesis based on flash chemistry industrial applications of flash chemistry Flash Chemistry: Fast Organic Synthesis in Microsystems is an essential introduction to anyone working in organic synthesis, process chemistry, chemical engineering and physical organic chemistry concerned with fundamental aspects of chemical reactions an d synthesis and the production of organic compounds.
Contains the presentations and discussions that took place during a symposium at the CIBA Foundation on October 1-3, 1990 on the subject of catalytic antibodies. The recognition that monoclonal antibodies can possess catalytic activity is a recent advance with profound ramifications for chemistry. In addition to their potential commercial applications as catalysts for reactions, for which there are no known enzymes, antibodies promise to provide valuable insight into the detailed mechanisms of biological catalysis and organic chemistry.
Perspectives in Supramolecular Chemistry Founded by J.-M. Lehn Perspectives in Supramolecular Chemistry reflects research which develops supramolecular structures with specific new properties, such as recognition, transport and simulation of biosystems or new materials. The series covers all areas from theoretical and modelling aspects through organic and inorganic chemistry and biochemistry to materials, solid-state and polymer sciences reflecting the many and varied applications of supramolecular structures in modern chemistry. Giant Vesicles Edited by Pier Luigi Luisi and Peter Walde Institute für Polymere, ETH-Zürich, Switzerland Giant vesicles or giant liposomes are supramolecular assembles of amphiphiles, surface active substances which normally contain one or two hydrophobic chains and one hydrophilic head. Due to their relatively large size, giant vesicles are easily observed by light microscopy. This volume provides an overview of ideas and results obtained from experimental studies as well as theoretical approaches. A wide variety of aspects ranging from pure mathematics and physical considerations to biochemical and biological applications are covered. Historical and fundamental aspects are discussed as well as a range of experimental approaches including the micromanipulation and micro-puncturing of single giant vesicles. 87 international contributors comment on a wide range of issues contained under the five main part headings: Introduction Preparation Methods Basic Theoretical Aspects Physical Properties Chemical and Biological Aspects. Giant Vesicles has been written for researchers in the fields of chemistry, biochemistry and biophysics, working in supra-molecular chemistry, surfactant science, liposome and pharmaceutical sciences.
The chemistry of superacids has developed in the last two decades into a field of growing interest and importance. Now available in a new expanded second edition, this definitive work on superacids offers a comprehensive review of superacids and discusses the development of new superacid systems and applications of superacids in the promotion of unusual reactions. Covering Bronsted and Leurs superacids, solid superacids, carbocations, heterocations, and catalyzed reactions, this timely volume is invaluable to professionals, faculty, and graduate students in organic, inorganic, and physical chemistry.
The second volume in a series, Organic Synthesis: State of the Art 2005-2007 will provide you with a convenient, compact summary of the state of the art of organic synthesis. This reference guide will quickly lead you to the most important recent developments like how scientists can now prepare ketones by directly combining aldehydes with terminal alkenes. Inside, you will find detailed analysis of more than twenty total syntheses, including the Davies Synthesis of (-)-Colombiasin A and (-)-Elisapterosin B, the Overman Synthesis of (-)-Sarain A, and the Sorensen Synthesis of (-)-Guanacastepene E.
A completely updated, expanded edition of a longstanding and influential text on chemical thermodynamics Covers the logical foundations and interrelationships of thermodynamics and their application to problems that are commonly encountered by the chemist. Explanations of abstract concepts in a clear and simple, yet still rigorous fashion Logical arrangement of the material to facilitate learning, including worked out examples. Computational techniques, graphical, numerical, and analytical, are described fully and are used frequently, both in illustrative and in assigned problems.
This definitive reference consolidates current knowledge on dihydrogen bonding, emphasizing its role in organizing interactions in different chemical reactions and molecular aggregations. After an overview, it analyzes the differences between dihydrogen bonds, classical hydrogen bonds, and covalent bonds. It describes dihydrogen bonds as intermediates in intramolecular and intermolecular proton transfer reactions. It describes dihydrogen bonding in the solid-state, the gas phase, and in solution. This is the premier reference for physical chemists, biochemists, biophysicists, and chemical engineers.
The Comprehensive, Single-Source Reference on Multiple Emulsions In theory, multiple emulsions have significant potential for breakthrough applications in food, agricultural, pharmaceutical, nutraceutical, and cosmetic industries in which they can facilitate the sustained release and transport of active material. However, in practice, multiple emulsions are thermodynamically unstable. This book presents recent findings that can help formulators understand how to enhance their stability. With chapters contributed by leading experts from around the world, it covers the definition and properties of multiple emulsions, their formation and stability, and potential applications, with an emphasis on medical and pharmaceutical applications. In one definitive resource, it presents recent findings and achievements in the field, including: New theoretical approaches and modeling to characterize the transport mechanism Droplet size reduction and increased shelf life stability through the use of polymeric amphiphiles and complex adducts The use of new emulsification techniques to enhance the monodispersibility of the droplets Potential applications in drug delivery systems where clinical studies have proven their efficacy This is a core, hands-on reference for surface and colloid scientists, physical chemists, chemical engineers, soft materials scientists, food chemists, controlled release scientists, and pharmaceutical scientists in drug delivery applications, as well as for graduate students in these disciplines. The editor and contributors hope this logical consolidation of current information will further the understanding of multiple emulsions and lead to new, practical applications.