Analyze your biostatistics data with JMP! <p> Trevor Bihl's <i>Biostatistics Using JMP: A Practical Guide</i> provides a practical introduction on using JMP, the interactive statistical discovery software, to solve biostatistical problems. Providing extensive breadth, from summary statistics to neural networks, this essential volume offers a comprehensive, step-by-step guide to using JMP to handle your data. <p> The first biostatistical book to focus on software, <i>Biostatistics Using JMP</i> discusses such topics as data visualization, data wrangling, data cleaning, histograms, box plots, Pareto plots, scatter plots, hypothesis tests, confidence intervals, analysis of variance, regression, curve fitting, clustering, classification, discriminant analysis, neural networks, decision trees, logistic regression, survival analysis, control charts, and metaanalysis. <p> Written for university students, professors, those who perform biological/biomedical experiments, laboratory managers, and research scientists, <i>Biostatistics Using JMP</i> provides a practical approach to using JMP to solve your biostatistical problems.
Master Statistical Quality Control using JMP ! Using examples from the popular textbook by Douglas Montgomery, Introduction to Statistical Quality Control: A JMP Companion demonstrates the powerful Statistical Quality Control (SQC) tools found in JMP. Geared toward students and practitioners of SQC who are using these techniques to monitor and improve products and processes, this companion provides step-by-step instructions on how to use JMP to generate the output and solutions found in Montgomery’s book. The authors combine their many years of experience as passionate practitioners of SQC and their expertise using JMP to highlight the recent advances in JMP’s Analyze menu, and in particular, Quality and Process. Key JMP platforms include: Control Chart Builder CUSUM Control Chart Control Chart (XBar, IR, P, NP, C, U, UWMA, EWMA, CUSUM) Process Screening Process Capability Measurement System Analysis Time Series Multivariate Control Chart Multivariate and Principal Components Distribution For anyone who wants to learn how to use JMP to more easily explore data using tools associated with Statistical Process Control, Process Capability Analysis, Measurement System Analysis, Advanced Statistical Process Control, and Process Health Assessment, this book is a must!
Students and instructors of statistics courses using SAS University Edition will welcome this book. Learning fundamental statistics is essential to solving problems with SAS. Essential Statistics Using SAS University Edition demonstrates how to use SAS University Edition to apply a variety of statistical methodologies, from the simple to the not-so-simple, to a range of data sets. Learn how to apply the appropriate statistical method to answer a particular question about a data set, and correctly interpret the numerical results that you obtain. SAS University Edition users who are new to SAS or who need a refresher course will benefit from the statistics overview and topics, such as multiple linear regression, logistic regression, and Poisson regression.
Learn how to solve basic statistical problems with Ron Cody's easy-to-follow style using the point-and-click SAS Studio tasks. Aimed specifically at the health sciences, Biostatistics by Example Using SAS Studio , provides an introduction to SAS Studio tasks. The book includes many biological and health-related problem sets and is fully compatible with SAS University Edition. After reading this book you will be able to understand temporary and permanent SAS data sets, and you will learn how to create them from various data sources. You will also be able to use SAS Studio statistics tasks to generate descriptive statistics for continuous and categorical data. The inferential statistics portion of the book covers the following topics: paired and unpaired t tests one-way analysis of variance N-way ANOVA correlation simple and multiple regression logistic regression categorical data analysis power and sample size calculations Besides describing each of these statistical tests, the book also discusses the assumptions that need to be met before running and interpreting these tests. For two-sample tests and N-way tests, nonparametric tests are also described. This book leads you step-by-step through each of the statistical tests with numerous screen shots, and you will see how to read and interpret all of the output generated by these tests. Experience with some basic statistical tests used to analyze medical data or classroom experience in biostatistics or statistics is required. Although the examples are related to the medical and biology fields, researchers in other fields such as psychology or education will find this book helpful. No programming experience is required. Loading data files into SAS University Edition? Click here for more information.
A step-by-step guide to predictive modeling!
Kattamuri Sarma's Predictive Modeling with SAS Enterprise Miner: Practical Solutions for Business Applications, Third Edition, will show you how to develop and test predictive models quickly using SAS Enterprise Miner. Using realistic data, the book explains complex methods in a simple and practical way to readers from different backgrounds and industries. Incorporating the latest version of Enterprise Miner, this third edition also expands the section on time series.
Written for business analysts, data scientists, statisticians, students, predictive modelers, and data miners, this comprehensive text provides examples that will strengthen your understanding of the essential concepts and methods of predictive modeling. Topics covered include logistic regression, regression, decision trees, neural networks, variable clustering, observation clustering, data imputation, binning, data exploration, variable selection, variable transformation, and much more, including analysis of textual data.
Develop predictive models quickly, learn how to test numerous models and compare the results, gain an in-depth understanding of predictive models and multivariate methods, and discover how to do in-depth analysis. Do it all with Predictive Modeling with SAS Enterprise Miner!
Statisticians and researchers will find Categorical Data Analysis Using SAS, Third Edition, by Maura Stokes, Charles Davis, and Gary Koch, to be a useful discussion of categorical data analysis techniques as well as an invaluable aid in applying these methods with SAS. Practical examples from a broad range of applications illustrate the use of the FREQ, LOGISTIC, GENMOD, NPAR1WAY, and CATMOD procedures in a variety of analyses. Topics discussed include assessing association in contingency tables and sets of tables, logistic regression and conditional logistic regression, weighted least squares modeling, repeated measurements analyses, loglinear models, generalized estimating equations, and bioassay analysis.
The third edition updates the use of SAS/STAT software to SAS/STAT 12.1 and incorporates ODS Graphics. Many additional SAS statements and options are employed, and graphs such as effect plots, odds ratio plots, regression diagnostic plots, and agreement plots are discussed. The material has also been revised and reorganized to reflect the evolution of categorical data analysis strategies. Additional techniques include such topics as exact Poisson regression, partial proportional odds models, Newcombe confidence intervals, incidence density ratios, and so on.
This book is part of the SAS Press program.
This tutorial for data analysts new to SAS Enterprise Guide and SAS Enterprise Miner provides valuable experience using powerful statistical software to complete the kinds of business analytics common to most industries.
Today’s businesses increasingly use data to drive decisions that keep them competitive. Especially with the influx of big data, the importance of data analysis to improve every dimension of business cannot be overstated. Data analysts are therefore in demand; however, many hires and prospective hires, although talented with respect to business and statistics, lack the know-how to perform business analytics with advanced statistical software.
Business Analytics Using SAS Enterprise Guide and SAS Enterprise Miner is a beginner’s guide with clear, illustrated, step-by-step instructions that will lead you through examples based on business case studies. You will formulate the business objective, manage the data, and perform analyses that you can use to optimize marketing, risk, and customer relationship management, as well as business processes and human resources. Topics include descriptive analysis, predictive modeling and analytics, customer segmentation, market analysis, share-of-wallet analysis, penetration analysis, and business intelligence.
This book is part of the SAS Press program.
Why does SAS use January 1, 1960 as its arbitrary reference date? How do you convert a value such as 27 January 2003 into a SAS date? How do you put a date into a filename, or label an Excel worksheet with the date?
You'll find the answers to these questions and much more in Derek Morgan's Essential Guide to SAS Dates and Times, Second Edition, which makes it easy to understand how to use and manipulate dates, times, and datetimes in SAS. Updated for SAS 9.4, with additional functions, formats, and capabilities, the Second Edition has a new chapter dedicated to the ISO 8601 standard and the formats and functions that are new to SAS, including how SAS works with Universal Coordinated Time (UTC).
Novice users will appreciate the new «Troubleshooting» appendix, which discusses questions common to newer SAS users in a conversational way and provides clear examples of simple solutions to these questions. Both novice and intermediate users will find the clear, task-based examples on how to accomplish date-related tasks and the detailed explanations of standard formats and functions invaluable. Users working with intervals will appreciate the expanded discussion of the topic, which details the new custom interval capability, among other enhancements to intervals.
Users working with international dates and times will benefit from the detailed discussion of the NLS facility as it relates to dates and times. Included are bonus «Quick Reference Guides» that list both the standard date and time formats and the NLS date and time formats with examples. These guides illustrate how each format displays the same date, time, or datetime, so you can find the format you want to use at a glance.
The Essential Guide to SAS Dates and Times, Second Edition is the most complete and up-to-date collection of examples on how to write complex programs involving dates, times, or datetime values.
This book is part of the SAS Press Program.
SAS/IML software is a powerful tool for data analysts because it enables implementation of statistical algorithms that are not available in any SAS procedure. Rick Wicklin's Statistical Programming with SAS/IML Software is the first book to provide a comprehensive description of the software and how to use it. He presents tips and techniques that enable you to use the IML procedure and the SAS/IML Studio application efficiently. In addition to providing a comprehensive introduction to the software, the book also shows how to create and modify statistical graphs, call SAS procedures and R functions from a SAS/IML program, and implement such modern statistical techniques as simulations and bootstrap methods in the SAS/IML language. Written for data analysts working in all industries, graduate students, and consultants, Statistical Programming with SAS/IML Software includes numerous code snippets and more than 100 graphs.
This book is part of the SAS Press program.
Hash tables can do a lot more than you might think! <I>Data Management Solutions Using SAS Hash Table Operations: A Business Intelligence Case Study</I> concentrates on solving your challenging data management and analysis problems via the power of the SAS hash object, whose environment and tools make it possible to create complete dynamic solutions. To this end, this book provides an in-depth overview of the hash table as an in-memory database with the CRUD (Create, Retrieve, Update, Delete) cycle rendered by the hash object tools. By using this concept and focusing on real-world problems exemplified by sports data sets and statistics, this book seeks to help you take advantage of the hash object productively, in particular, but not limited to, the following tasks: <ul> <li> select proper hash tools to perform hash table operations <li> use proper hash table operations to support specific data management tasks <li> use the dynamic, run-time nature of hash object programming <li> understand the algorithmic principles behind hash table data look-up, retrieval, and aggregation <li> learn how to perform data aggregation, for which the hash object is exceptionally well suited <li> manage the hash table memory footprint, especially when processing big data <li> use hash object techniques for other data processing tasks, such as filtering, combining, splitting, sorting, and unduplicating. </ul> Using this book, you will be able to answer your toughest questions quickly and in the most efficient way possible!