This introduction to linear algebra and functional analysis offers a clear expository treatment, viewing algebra, geometry, and analysis as parts of an integrated whole rather than separate subjects. All abstract ideas receive a high degree of motivation, and numerous examples illustrate many different fields of mathematics. Abundant problems include hints or answers.
Modern conceptual treatment of multivariable calculus, emphasizing interplay of geometry and analysis via linear algebra and the approximation of nonlinear mappings by linear ones. Over 400 well-chosen problems. 1973 edition.
A classic of science, this famous essay by «the Newton of France» introduces lay readers to the concepts and uses of probability theory. It is of especial interest today as an application of mathematical techniques to problems in social and biological sciences.Generally recognized as the founder of the modern phase of probability theory, Laplace here applies the principles and general results of his theory «to the most important questions of life, which are, in effect, for the most part, problems in probability.» Thus, without the use of higher mathematics, he demonstrates the application of probability to games of chance, physics, reliability. of witnesses, astronomy, insurance, democratic government and many other areas.General readers will find it an exhilarating experience to follow Laplace's nontechnical application of mathematical techniques to the appraisal, solution and/or prediction of the outcome of many types of problems. Skilled mathematicians, too, will enjoy and benefit from seeing how one of the immortals of science expressed so many complex ideas in such simple terms.
Readers wishing to renew and extend their acquaintance with a variety of branches of mathematics will find this volume a practical companion. Geared toward those who already possess some familiarity with its subjects, the easy-to-follow explanations and straightforward tone make this book highly accessible. The contents are arranged logically and in order of difficulty: fractions, decimals, square and cube root, the metric system, algebra, quadratic and cubic equations, graphs, and the calculus are among the topics. Explanations of mathematical principles are followed by worked examples, and the book includes a convenient selection of tables that cover the trigonometrical functions and logarithms necessary for completing some of the examples.
The application of statistical methods in mass production make possible the most efficient use of raw materials and manufacturing processes, economical production, and the highest standards of quality for manufactured goods. In this classic volume, based on a series of ground-breaking lectures given to the Graduate School of the Department of Agriculture in 1938, Dr. Shewhart illuminated the fundamental principles and techniques basic to the efficient use of statistical method in attaining statistical control, establishing tolerance limits, presenting data, and specifying accuracy and precision.In the first chapter, devoted to statistical control, the author broadly defines the three steps in quality control: specification, production, and inspection; then outlines the historical background of quality control. This is followed by a rigorous discussion of the physical and mathematical states of statistical control, statistical control as an operation, the significance of statistical control and the future of statistics in mass production.Chapter II offers a thought-provoking treatment of the problem of establishing limits of variability, including the meaning of tolerance limits, establishing tolerance limits in the simplest cases and in practical cases, and standard methods of measuring. Chapter III explores the presentation of measurements of physical properties and constants. Among the topics considered are measurements presented as original data, characteristics of original data, summarizing original data (both by symmetric functions and by Tchebycheff's theorem), measurement presented as meaningful predictions, and measurement presented as knowledge.Finally, Dr. Shewhart deals with the problem of specifying accuracy and precision — the meaning of accuracy and precision, operational meaning, verifiable procedures, minimum quantity of evidence needed for forming a judgment and more.Now available for the first time in this inexpensive paperbound format, this highly respected study will be welcomed by mathematics students, engineers, researchers in industry and agriculture — anyone in need of a lucid, well-written explanation of how to regulate variable and maintain control over statistics in order to achieve quality control over manufactured products, crops, and data.
The Pythagorean Theorem is one of the fundamental theorems of elementary geometry, and Pythagorean triangles — right triangles whose sides are natural numbers — have been studied by mathematicians since antiquity. In this classic text, a brilliant Polish mathematician explores the intriguing mathematical relationships in such triangles.Starting with «primitive» Pythagorean triangles, the text examines triangles with sides less than 100, triangles with two sides that are successive numbers, divisibility of one of the sides by 3 or by 5, the values of the sides of triangles, triangles with the same arm or the same hypotenuse, triangles with the same perimeter, and triangles with the same area. Additional topics include the radii of circles inscribed in Pythagorean triangles, triangles in which one or more sides are squares, triangles with natural sides and natural areas, triangles in which the hypotenuse and the sum of the arms are squares, representation of triangles with the help of the points of a plane, right triangles whose sides are reciprocals of natural numbers, and cuboids with edges and diagonals expressed by natural numbers.
A pioneer in the fields of statistics and probability theory, Richard von Mises (1883–1953) made notable advances in boundary-layer-flow theory and airfoil design. This text on compressible flow, unfinished upon his sudden death, was subsequently completed in accordance with his plans, and von Mises' first three chapters were augmented with a survey of the theory of steady plane flow. Suitable as a text for advanced undergraduate and graduate students — as well as a reference for professionals — Mathematical Theory of Compressible Fluid Flow examines the fundamentals of high-speed flows, with detailed considerations of general theorems, conservation equations, waves, shocks, and nonisentropic flows.In this, the final work of his distinguished career, von Mises summarizes his extensive knowledge of a central branch of fluid mechanics. Characteristically, he pays particular attention to the basics, both conceptual and mathematical. The novel concept of a specifying equation clarifies the role of thermodynamics in the mechanics of compressible fluids. The general theory of characteristics receives a remarkably complete and simple treatment, with detailed applications, and the theory of shocks as asymptotic phenomena appears within the context of rational mechanics.
Many people suffer from an inferiority complex where mathematics is concerned, regarding figures and equations with a fear based on bewilderment and inexperience. This book dispels some of the subject’s alarming aspects, starting at the very beginning and assuming no mathematical education.Written in a witty and engaging style, the text contains an illustrative example for every point, as well as absorbing glimpses into mathematical history and philosophy. Topics include the system of tens and other number systems; symbols and commands; first steps in algebra and algebraic notation; common fractions and equations; irrational numbers; algebraic functions; analytical geometry; differentials and integrals; the binomial theorem; maxima and minima; logarithms; and much more. Upon reaching the conclusion, readers will possess the fundamentals of mathematical operations, and will undoubtedly appreciate the compelling magic behind a subject they once dreaded.
This book, for the first time, provides laymen and mathematicians alike with a detailed picture of the historical development of one of the most momentous achievements of the human intellect ― the calculus. It describes with accuracy and perspective the long development of both the integral and the differential calculus from their early beginnings in antiquity to their final emancipation in the 19th century from both physical and metaphysical ideas alike and their final elaboration as mathematical abstractions, as we know them today, defined in terms of formal logic by means of the idea of a limit of an infinite sequence.But while the importance of the calculus and mathematical analysis ― the core of modern mathematics ― cannot be overemphasized, the value of this first comprehensive critical history of the calculus goes far beyond the subject matter. This book will fully counteract the impression of laymen, and of many mathematicians, that the great achievements of mathematics were formulated from the beginning in final form. It will give readers a sense of mathematics not as a technique, but as a habit of mind, and serve to bridge the gap between the sciences and the humanities. It will also make abundantly clear the modern understanding of mathematics by showing in detail how the concepts of the calculus gradually changed from the Greek view of the reality and immanence of mathematics to the revised concept of mathematical rigor developed by the great 19th century mathematicians, which held that any premises were valid so long as they were consistent with one another. It will make clear the ideas contributed by Zeno, Plato, Pythagoras, Eudoxus, the Arabic and Scholastic mathematicians, Newton, Leibnitz, Taylor, Descartes, Euler, Lagrange, Cantor, Weierstrass, and many others in the long passage from the Greek «method of exhaustion» and Zeno's paradoxes to the modern concept of the limit independent of sense experience; and illuminate not only the methods of mathematical discovery, but the foundations of mathematical thought as well.
Mathematical physics plays an important role in the study of many physical processes — hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced undergraduate- or graduate-level text considers only those problems leading to partial differential equations. Contents:I. Classification of Partial Differential EquationsII. Evaluations of the Hyperbolic TypeIII. Equations of the Parabolic TypeIV. Equations of Elliptic TypeV. Wave Propagation in SpaceVI. Heat Conduction in SpaceVII. Equations of Elliptic Type (Continuation)The authors — two well-known Russian mathematicians — have focused on typical physical processes and the principal types of equations dealing with them. Special attention is paid throughout to mathematical formulation, rigorous solutions, and physical interpretation of the results obtained. Carefully chosen problems designed to promote technical skills are contained in each chapter, along with extremely useful appendixes that supply applications of solution methods described in the main text. At the end of the book, a helpful supplement discusses special functions, including spherical and cylindrical functions.