Математика

Различные книги в жанре Математика

Risk and Financial Management

Группа авторов

Financial risk management has become a popular practice amongst financial institutions to protect against the adverse effects of uncertainty caused by fluctuations in interest rates, exchange rates, commodity prices, and equity prices. New financial instruments and mathematical techniques are continuously developed and introduced in financial practice. These techniques are being used by an increasing number of firms, traders and financial risk managers across various industries. Risk and Financial Management: Mathematical and Computational Methods confronts the many issues and controversies, and explains the fundamental concepts that underpin financial risk management. Provides a comprehensive introduction to the core topics of risk and financial management. Adopts a pragmatic approach, focused on computational, rather than just theoretical, methods. Bridges the gap between theory and practice in financial risk management Includes coverage of utility theory, probability, options and derivatives, stochastic volatility and value at risk. Suitable for students of risk, mathematical finance, and financial risk management, and finance practitioners. Includes extensive reference lists, applications and suggestions for further reading. Risk and Financial Management: Mathematical and Computational Methods is ideally suited to both students of mathematical finance with little background in economics and finance, and students of financial risk management, as well as finance practitioners requiring a clearer understanding of the mathematical and computational methods they use every day. It combines the required level of rigor, to support the theoretical developments, with a practical flavour through many examples and applications.

Textbook of Clinical Trials

David Machin

Now published in its Second Edition, the Textbook of Clinical Trials offers detailed coverage of trial methodology in diverse areas of medicine in a single comprehensive volume. Praise for the First Edition: «… very useful as an introduction to clinical research, or for those planning specific studies within therapeutic or disease areas.» BRITISH JOURNAL OF SURGERY, Vol. 92, No. 2, February 2005 The book’s main concept is to describe the impact of clinical trials on the practice of medicine. It separates the information by therapeutic area because the impact of clinical trials, the problems encountered, and the numbers of trials in existence vary tremendously from specialty to specialty. The sections provide a background to the disease area and general clinical trial methodology before concentrating on particular problems experienced in that area. Specific examples are used throughout to address these issues. The Textbook of Clinical Trials, Second Edition: Highlights the various ways clinical trials have influenced the practice of medicine in many therapeutic areas Describes the challenges posed by those conducting clinical trials over a range of medical specialities and allied fields Additional therapeutic areas are included in this Second Edition to fill gaps in the First Edition as the number and complexity of trials increases in this rapidly developing area Newly covered or updated in the Second Edition: general surgery, plastic surgery, aesthetic surgery, palliative care, primary care, anaesthesia and pain, transfusion, wound healing, maternal and perinatal health, early termination, organ transplants, ophthalmology, epilepsy, infectious disease, neuro-oncology, adrenal, thyroid and urological cancers, as well as a chapter on the Cochrane network An invaluable resource for pharmaceutical companies, the Textbook of Clinical Trials, Second Edition appeals to those working in contract research organizations, medical departments and in the area of public health and health science alike.

The History of Mathematics

Группа авторов

This new edition brings the fascinating and intriguing history of mathematics to life The Second Edition of this internationally acclaimed text has been thoroughly revised, updated, and reorganized to give readers a fresh perspective on the evolution of mathematics. Written by one of the world's leading experts on the history of mathematics, the book details the key historical developments in the field, providing an understanding and appreciation of how mathematics influences today's science, art, music, literature, and society. In the first edition, each chapter was devoted to a single culture. This Second Edition is organized by subject matter: a general survey of mathematics in many cultures, arithmetic, geometry, algebra, analysis, and mathematical inference. This new organization enables students to focus on one complete topic and, at the same time, compare how different cultures approached each topic. Many new photographs and diagrams have been added to this edition to enhance the presentation. The text is divided into seven parts: The World of Mathematics and the Mathematics of the World, including the origin and prehistory of mathematics, cultural surveys, and women mathematicians Numbers, including counting, calculation, ancient number theory, and numbers and number theory in modern mathematics Color Plates, illustrating the impact of mathematics on civilizations from Egypt to Japan to Mexico to modern Europe Space, including measurement, Euclidean geometry, post-Euclidean geometry, and modern geometrics Algebra, including problems leading to algebra, equations and methods, and modern algebra Analysis, including the calculus, real, and complex analysis Mathematical Inference, including probability and statistics, and logic and set theory As readers progress through the text, they learn about the evolution of each topic, how different cultures devised their own solutions, and how these solutions enabled the cultures to develop and progress. In addition, readers will meet some of the greatest mathematicians of the ages, who helped lay the groundwork for today's science and technology. The book's lively approach makes it appropriate for anyone interested in learning how the field of mathematics came to be what it is today. It can also serve as a textbook for undergraduate or graduate-level courses. An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley editorial department.

Affine and Projective Geometry

Группа авторов

An important new perspective on AFFINE AND PROJECTIVE GEOMETRY This innovative book treats math majors and math education students to a fresh look at affine and projective geometry from algebraic, synthetic, and lattice theoretic points of view. Affine and Projective Geometry comes complete with ninety illustrations, and numerous examples and exercises, covering material for two semesters of upper-level undergraduate mathematics. The first part of the book deals with the correlation between synthetic geometry and linear algebra. In the second part, geometry is used to introduce lattice theory, and the book culminates with the fundamental theorem of projective geometry. While emphasizing affine geometry and its basis in Euclidean concepts, the book: * Builds an appreciation of the geometric nature of linear algebra * Expands students' understanding of abstract algebra with its nontraditional, geometry-driven approach * Demonstrates how one branch of mathematics can be used to prove theorems in another * Provides opportunities for further investigation of mathematics by various means, including historical references at the ends of chapters Throughout, the text explores geometry's correlation to algebra in ways that are meant to foster inquiry and develop mathematical insights whether or not one has a background in algebra. The insight offered is particularly important for prospective secondary teachers who must major in the subject they teach to fulfill the licensing requirements of many states. Affine and Projective Geometry's broad scope and its communicative tone make it an ideal choice for all students and professionals who would like to further their understanding of things mathematical.

Practical Methods of Optimization

Группа авторов

Fully describes optimization methods that are currently most valuable in solving real-life problems. Since optimization has applications in almost every branch of science and technology, the text emphasizes their practical aspects in conjunction with the heuristics useful in making them perform more reliably and efficiently. To this end, it presents comparative numerical studies to give readers a feel for possibile applications and to illustrate the problems in assessing evidence. Also provides theoretical background which provides insights into how methods are derived. This edition offers revised coverage of basic theory and standard techniques, with updated discussions of line search methods, Newton and quasi-Newton methods, and conjugate direction methods, as well as a comprehensive treatment of restricted step or trust region methods not commonly found in the literature. Also includes recent developments in hybrid methods for nonlinear least squares; an extended discussion of linear programming, with new methods for stable updating of LU factors; and a completely new section on network programming. Chapters include computer subroutines, worked examples, and study questions.

Integer and Combinatorial Optimization

Laurence Wolsey A.

Rave reviews for INTEGER AND COMBINATORIAL OPTIMIZATION «This book provides an excellent introduction and survey of traditional fields of combinatorial optimization . . . It is indeed one of the best and most complete texts on combinatorial optimization . . . available. [And] with more than 700 entries, [it] has quite an exhaustive reference list.»-Optima «A unifying approach to optimization problems is to formulate them like linear programming problems, while restricting some or all of the variables to the integers. This book is an encyclopedic resource for such formulations, as well as for understanding the structure of and solving the resulting integer programming problems.»-Computing Reviews «[This book] can serve as a basis for various graduate courses on discrete optimization as well as a reference book for researchers and practitioners.»-Mathematical Reviews «This comprehensive and wide-ranging book will undoubtedly become a standard reference book for all those in the field of combinatorial optimization.»-Bulletin of the London Mathematical Society «This text should be required reading for anybody who intends to do research in this area or even just to keep abreast of developments.»-Times Higher Education Supplement, London Also of interest . . . INTEGER PROGRAMMING Laurence A. Wolsey Comprehensive and self-contained, this intermediate-level guide to integer programming provides readers with clear, up-to-date explanations on why some problems are difficult to solve, how techniques can be reformulated to give better results, and how mixed integer programming systems can be used more effectively. 1998 (0-471-28366-5) 260 pp.

An Introduction to Optimization

Stanislaw Zak H.

Praise from the Second Edition «…an excellent introduction to optimization theory…» (Journal of Mathematical Psychology, 2002) «A textbook for a one-semester course on optimization theory and methods at the senior undergraduate or beginning graduate level.» (SciTech Book News, Vol. 26, No. 2, June 2002) Explore the latest applications of optimization theory and methods Optimization is central to any problem involving decision making in many disciplines, such as engineering, mathematics, statistics, economics, and computer science. Now, more than ever, it is increasingly vital to have a firm grasp of the topic due to the rapid progress in computer technology, including the development and availability of user-friendly software, high-speed and parallel processors, and networks. Fully updated to reflect modern developments in the field, An Introduction to Optimization, Third Edition fills the need for an accessible, yet rigorous, introduction to optimization theory and methods. The book begins with a review of basic definitions and notations and also provides the related fundamental background of linear algebra, geometry, and calculus. With this foundation, the authors explore the essential topics of unconstrained optimization problems, linear programming problems, and nonlinear constrained optimization. An optimization perspective on global search methods is featured and includes discussions on genetic algorithms, particle swarm optimization, and the simulated annealing algorithm. In addition, the book includes an elementary introduction to artificial neural networks, convex optimization, and multi-objective optimization, all of which are of tremendous interest to students, researchers, and practitioners. Additional features of the Third Edition include: New discussions of semidefinite programming and Lagrangian algorithms A new chapter on global search methods A new chapter on multipleobjective optimization New and modified examples and exercises in each chapter as well as an updated bibliography containing new references An updated Instructor's Manual with fully worked-out solutions to the exercises Numerous diagrams and figures found throughout the text complement the written presentation of key concepts, and each chapter is followed by MATLAB exercises and drill problems that reinforce the discussed theory and algorithms. With innovative coverage and a straightforward approach, An Introduction to Optimization, Third Edition is an excellent book for courses in optimization theory and methods at the upper-undergraduate and graduate levels. It also serves as a useful, self-contained reference for researchers and professionals in a wide array of fields.

An Introduction to Optimization

Stanislaw Zak H.

A modern, up-to-date introduction to optimization theory and methods This authoritative book serves as an introductory text to optimization at the senior undergraduate and beginning graduate levels. With consistently accessible and elementary treatment of all topics, An Introduction to Optimization, Second Edition helps students build a solid working knowledge of the field, including unconstrained optimization, linear programming, and constrained optimization. Supplemented with more than one hundred tables and illustrations, an extensive bibliography, and numerous worked examples to illustrate both theory and algorithms, this book also provides: * A review of the required mathematical background material * A mathematical discussion at a level accessible to MBA and business students * A treatment of both linear and nonlinear programming * An introduction to recent developments, including neural networks, genetic algorithms, and interior-point methods * A chapter on the use of descent algorithms for the training of feedforward neural networks * Exercise problems after every chapter, many new to this edition * MATLAB(r) exercises and examples * Accompanying Instructor's Solutions Manual available on request An Introduction to Optimization, Second Edition helps students prepare for the advanced topics and technological developments that lie ahead. It is also a useful book for researchers and professionals in mathematics, electrical engineering, economics, statistics, and business. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Principles of Differential Equations

Группа авторов

An accessible, practical introduction to the principles of differential equations The field of differential equations is a keystone of scientific knowledge today, with broad applications in mathematics, engineering, physics, and other scientific fields. Encompassing both basic concepts and advanced results, Principles of Differential Equations is the definitive, hands-on introduction professionals and students need in order to gain a strong knowledge base applicable to the many different subfields of differential equations and dynamical systems. Nelson Markley includes essential background from analysis and linear algebra, in a unified approach to ordinary differential equations that underscores how key theoretical ingredients interconnect. Opening with basic existence and uniqueness results, Principles of Differential Equations systematically illuminates the theory, progressing through linear systems to stable manifolds and bifurcation theory. Other vital topics covered include: Basic dynamical systems concepts Constant coefficients Stability The Poincaré return map Smooth vector fields As a comprehensive resource with complete proofs and more than 200 exercises, Principles of Differential Equations is the ideal self-study reference for professionals, and an effective introduction and tutorial for students.

Calculus Workbook For Dummies

Группа авторов

The easy way to conquer calculus Calculus is hard—no doubt about it—and students often need help understanding or retaining the key concepts covered in class. Calculus Workbook For Dummies serves up the concept review and practice problems with an easy-to-follow, practical approach. Plus, you’ll get free access to a quiz for every chapter online. With a wide variety of problems on everything covered in calculus class, you’ll find multiple examples of limits, vectors, continuity, differentiation, integration, curve-sketching, conic sections, natural logarithms, and infinite series. Plus, you’ll get hundreds of practice opportunities with detailed solutions that will help you master the math that is critical for scoring your highest in calculus. Review key concepts Take hundreds of practice problems Get access to free chapter quizzes online Use as a classroom supplement or with a tutor Get ready to quickly and easily increase your confidence and improve your skills in calculus.