The Ancient Life History of the Earth. Henry Alleyne Nicholson

Читать онлайн.
Название The Ancient Life History of the Earth
Автор произведения Henry Alleyne Nicholson
Жанр Языкознание
Серия
Издательство Языкознание
Год выпуска 0
isbn 4057664615527



Скачать книгу

of their existing representatives. In technical language, the early forms of life in some instances possess "embryonic" characters, though this does not prevent them often attaining a size much more gigantic than their nearest living relatives. Moreover, the ancient forms of life are often what is called "comprehensive types"—that is to say, they possess characters in combination such as we nowadays only find separately developed in different, groups of animals. Now, this permanent retention of embryonic characters and this "comprehensiveness" of structural type are signs of what a zoologist considers to be a comparatively low grade of organisation; and the prevalence of these features in the earlier forms of animals is a very striking phenomenon, though they are none the less perfectly organised so far as their own type is concerned. As we pass upwards in the geological scale, we find that these features gradually disappear, higher and ever higher forms are introduced, and "specialisation" of type takes the place of the former comprehensiveness. We shall have occasion to notice many of the facts on which these views are based at a later period, and in connection with actual examples. In the meanwhile, it is sufficient to state, as a widely-accepted generalisation of palæontology, that there has been in the past a general progression of organic types, and that the appearance of the lower forms of life has in the main preceded that of the higher forms in point of time.

       Table of Contents

      HISTORICAL PALÆONTOLOGY.

       Table of Contents

      THE LAURENTIAN AND HURONIAN PERIODS.

      The Laurentian Rocks constitute the base of the entire stratified series, and are, therefore, the oldest sediments of which we have as yet any knowledge. They are more largely and more typically developed in North America, and especially in Canada, than in any known part of the world, and they derive their title from the range of hills which the old French geographers named the "Laurentides." These hills are composed of Laurentian Rocks, and form the watershed between the valley of the St. Lawrence river on the one hand, and the great plains which stretch northwards to Hudson Bay on the other hand. The main area of these ancient deposits forms a great belt of rugged and undulating country, which extends from Labrador westwards to Lake Superior, and then bends northwards towards the Arctic Sea. Throughout this extensive area the Laurentian Rocks for the most part present themselves in the form of low, rounded, ice-worn hills, which, if generally wanting in actual sublimity, have a certain geological grandeur from the fact that they "have endured the battles and the storms of time longer than any other mountains" (Dawson). In some places, however, the Laurentian Rocks produce scenery of the most magnificent character, as in the great gorge cut through them by the river Saguenay, where they rise at times into vertical precipices 1500 feet in height. In the famous group of the Adirondack mountains, also, in the state of New York, they form elevations no less than 6000 feet above the level of the sea. As a general rule, the character of the Laurentian region is that of a rugged, rocky, rolling country, often densely timbered, but rarely well fitted for agriculture, and chiefly attractive to the hunter and the miner.

      As regards its mineral characters, the Laurentian series is composed throughout of metamorphic and highly crystalline rocks, which are in a high degree crumpled, folded, and faulted. By the late Sir William Logan the entire series was divided into two great groups, the Lower Laurentian and the Upper Laurentian, of which the latter rests unconformably upon the truncated edges of the former, and is in turn unconformably overlaid by strata of Huronian and Cambrian age (fig. 20).

      The Lower Laurentian series attains the enormous thickness Fig. 20 Fig. 20.—Diagrammatic section of the Laurentian Rocks in Lower Canada. a Lower Laurentian; b Upper Laurentian, resting unconformably upon the lower series; c Cambrian strata (Potsdam Sandstone), resting unconformably on the Upper Laurentian. of over 20,000 feet, and is composed mainly of great beds of gneiss, altered sandstones (quartzites), mica-schist, hornblende-schist, magnetic iron-ore, and hæmatite, together with masses of limestone. The limestones are especially interesting, and have an extraordinary development—three principal beds being known, of which one is not less than 1500 feet thick; the collective thickness of the whole being about 3500 feet.

      The Upper Laurentian series, as before said, reposes unconformably upon the Lower Laurentian, and attains a thickness of at least 10,000 feet. Like the preceding, it is wholly metamorphic, and is composed partly of masses of gneiss and quartzite; but it is especially distinguished by the possession of great beds of felspathic rock, consisting principally of "Labrador felspar."

      Though typically developed in the great Canadian area already spoken of, the Laurentian Rocks occur in other localities, both in America and in the Old World. In Britain, the so-called "fundamental gneiss" of the Hebrides and of Sutherlandshire is probably of Lower Laurentian age, and the "hypersthene rocks" of the Isle of Skye may, with great probability, be regarded as referable to the Upper Laurentian. In other localities in Great Britain (as in St. David's, South Wales; the Malvern Hills; and the North of Ireland) occur ancient metamorphic deposits which also are probably referable to the Laurentian series. The so-called "primitive gneiss" of Norway appears to belong to the Laurentian, and the ancient metamorphic rocks of Bohemia and Bavaria may be regarded as being approximately of the same age.

      By some geological writers the ancient and highly metamorphosed sediments of the Laurentian and the succeeding Huronian series have been spoken of as the "Azoic rocks" (Gr. a, without; zoe, life); but even if we were wholly destitute of any evidence of life during these periods, this name would be objectionable upon theoretical grounds. If a general name be needed, that of "Eozoic" (Gr. eos, dawn; zoe, life), proposed by Principal Dawson, is the most appropriate. Owing to their metamorphic condition, geologists long despaired of ever detecting any traces of life in the vast pile of strata which constitute the Laurentian System. Even before any direct traces were discovered, it was, however, pointed out that there were good reasons for believing that the Laurentian seas had been tenanted by an abundance of living beings. These reasons are briefly as follows:—(1) Firstly, the Laurentian series consists, beyond question, of marine sediments which originally differed in no essential respect from those which were subsequently laid down in the Cambrian or Silurian periods. (2) In all formations later than the Laurentian, any limestones which are present can be shown, with few exceptions, to be organic rocks, and to be more or less largely made up of the comminuted debris of marine or fresh-water animals. The Laurentian limestones, in consequence of the metamorphism to which they have been subjected, are so highly crystalline (fig. 21) that the microscope fails to detect Fig. 21 Fig. 21.—Section of Lower Laurentian Limestone from Hull, Ottawa; enlarged five diameters. The rock is very highly crystalline, and contains mica and other minerals. The irregular black masses in it are graphite. (Original.) any organic structure in the rock, and no fossils beyond those which will be spoken of immediately have as yet been discovered in them. We know, however, of numerous cases in which limestones, of later age, and undoubtedly organic to begin with, have been rendered so intensely crystalline by metamorphic action that all traces of organic structure have been obliterated. We have therefore, by analogy, the strongest possible ground for believing that the vast beds of Laurentian limestone have been originally organic in their origin, and primitively composed, in the main, of the calcareous skeletons of marine animals. It would, in fact, be a matter of great difficulty to account for the formation of these great calcareous masses on any other hypothesis. (3) The occurrence of phosphate of lime in the Laurentian Rocks in great abundance, and sometimes in the form of irregular beds, may very possibly be connected with the former existence in the strata of the remains of marine animals of whose skeleton this mineral is a constituent. (4) The Laurentian Rocks contain a vast amount of carbon in the form of black-lead or graphite. This mineral is especially abundant in the limestones, occurring in regular