Genome Engineering for Crop Improvement. Группа авторов

Читать онлайн.
Название Genome Engineering for Crop Improvement
Автор произведения Группа авторов
Жанр Биология
Серия
Издательство Биология
Год выпуска 0
isbn 9781119672401



Скачать книгу

in high‐current proton beam mode for micro‐PIXE. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 404: 69–73. https://doi.org/10.1016/J.NIMB.2017.01.023.

      62  Vogel‐Mikus, K., Regvar, M., Mesjasz‐Przybyłowicz, J. et al. (2008). Spatial distribution of cadmium in leaves of metal hyperaccumulating Thlaspi praecox using micro‐PIXE. New Phytol. 179: 712–721. https://doi.org/10.1111/j.1469‐8137.2008.02519.x.

      63 Vogel‐Mikuš, K., Pelicon, P., Vavpetič, P. et al. (2009). Elemental analysis of edible grains by micro‐PIXE: common buckwheat case study. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 267: 2884–2889. https://doi.org/10.1016/j.nimb.2009.06.104.

      64 Vogel‐Mikuš, K., Pongrac, P., and Pelicon, P. (2014). Micro‐PIXE elemental mapping for ionome studies of crop plants. Int. J. PIXE https://doi.org/10.1142/S0129083514400142.

      65 Warren, F.J., Perston, B.B., Galindez‐Najera, S.P. et al. (2015). Infrared microspectroscopic imaging of plant tissues: spectral visualization of Triticum aestivum kernel and Arabidopsis leaf microstructure. Plant J. 84: 634–646. https://doi.org/10.1111/tpj.13031.

      66 Wu, B. and Becker, J.S. (2012). Imaging techniques for elements and element species in plant science. Metallomics 4: 403. https://doi.org/10.1039/c2mt00002d.

      67 Yan, B., Isaure, M.P., Mounicou, S. et al. (2020). Cadmium distribution in mature durum wheat grains using dissection, laser ablation‐ICP‐MS and synchrotron techniques. Environ. Pollut. 260: 113987. https://doi.org/10.1016/j.envpol.2020.113987.

      68 Zhang, Y., Shi, R., Rezaul, K.M. et al. (2010). Iron and zinc concentrations in grain and flour of winter wheat as affected by foliar application. J. Agric. Food Chem. https://doi.org/10.1021/jf103039k.

       Sajid Fiaz1, Sher Aslam Khan1, Galal Bakr Anis2, Habib Ali3, Mohsin Ali4, Kazim Ali5, Mehmood Ali Noor6, Sibtain Ahmad4,7, and Bilal Ahmad Asad4

       1 Department of Plant Breeding and Genetics, The University of Haripur 22620, Haripur, Khyber Pakhtunkhwa, Pakistan

       2 Rice Research and Training Center (RRTC), Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Sakha, Kafr El‐sheikh, Egypt

       3 Department of Agricultural Engineering, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan

       4 University of Agriculture Faisalabad, Sub‐Campus Depalpur, Okara, Punjab, Pakistan

       5 National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan

       6 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081, China

       7 Animal Breeding and Genetics, Faculty of Animal husbandry, University of Agriculture Faisalabad, Punjab, Pakistan

      CHAPTER MENU

        3.1 Introduction

        3.2 Evolution and Historical Perspective of Genome Engineering

        3.3 CRISPR/Cas Genome Editing Systems

        3.4 Application of CRISPR/Cas System for Crops Quality Improvement 3.4.1 Rice 3.4.1.1 Application of CRISPR/Cas9 for Rice Quality Improvement 3.4.1.2 Wheat 3.4.1.3 Application of CRISPR/Cas9 for Wheat Quality Improvement 3.4.1.4 Maize 3.4.1.5 Application of CRISPR/Cas9 for Maize Quality Improvement 3.4.1.6 Cotton 3.4.1.7 Application of CRISPR/Cas9 for Cotton Quality Improvement 3.4.1.8 Soybean 3.4.1.9 Application of CRISPR/Cas9 for Soybean Quality Improvement

        3.5 Regulatory Measures for Genome Engineering Crops

        3.6 Conclusion

      To enhance the nutritional value of crops, current breeding efforts emphasized