Genome Engineering for Crop Improvement. Группа авторов

Читать онлайн.
Название Genome Engineering for Crop Improvement
Автор произведения Группа авторов
Жанр Биология
Серия
Издательство Биология
Год выпуска 0
isbn 9781119672401



Скачать книгу

65–81. https://doi.org/10.3945/ajcn.112.050609.

      7 Cotte, M., Pouyet, E., Salomé, M. et al. (2017). The ID21 X‐ray and infrared microscopy beamline at the ESRF: status and recent applications to artistic materials. J. Anal. At. Spectrom. 32: 477–493. https://doi.org/10.1039/C6JA00356G.

      8 Cvitanich, C., Przybyłowicz, W.J., Urbanski, D.F. et al. (2010). Iron and ferritin accumulate in separate cellular locations in Phaseolus seeds. BMC Plant Biol. 10: 26. https://doi.org/10.1186/1471‐2229‐10‐26.

      9 Detterbeck, A., Pongrac, P., Rensch, S. et al. (2016). Spatially resolved analysis of variation in barley (Hordeum vulgare) grain micronutrient accumulation. New Phytol. 211: 1241–1254. https://doi.org/10.1111/nph.13987.

      10 Dickinson, M., Heard, P.J., Barker, J.H.A. et al. (2006). Dynamic SIMS analysis of cryo‐prepared biological and geological specimens. Appl. Surf. Sci. 252: 6793–6796. https://doi.org/10.1016/j.apsusc.2006.02.236.

      11 Dong, Y., Li, B., and Aharoni, A. (2016a). More than pictures: when MS imaging meets histology. Trends Plant Sci. 21: 686–698. https://doi.org/10.1016/j.tplants.2016.04.007.

      12 Dong, Y., Li, B., Malitsky, S. et al. (2016b). Sample preparation for mass spectrometry imaging of plant tissues: areview. Front. Plant Sci. 7: 60. https://doi.org/10.3389/fpls.2016.00060.

      13 Eckardt, N.A. (2011). Plant science in the Service of Human Health and Nutrition. Plant Cell 23: 2476–2476. https://doi.org/10.1105/tpc.111.230715.

      14 Gianoncelli, A., Kourousias, G., Merolle, L. et al. (2016). Current status of the TwinMic beamline at Elettra: a soft X‐ray transmission and emission microscopy station. J. Synchrotron Radiat. 23: 1526–1537. https://doi.org/10.1107/S1600577516014405.

      15 Gorzolka, K., Kölling, J., Nattkemper, T.W., and Niehaus, K. (2016). Spatio‐temporal metabolite profiling of the barley germination process by MALDI MS imaging. PLoS One 11: e0150208. https://doi.org/10.1371/journal.pone.0150208.

      16 Grassl, J., Taylor, N.L., and Millar, H. (2011). Matrix‐assisted laser desorption/ionisation mass spectrometry imaging and its development for plant protein imaging. Plant Methods 7: 21. https://doi.org/10.1186/1746‐4811‐7‐21.

      17  Guendel, A., Rolletschek, H., Wagner, S. et al. (2018). Micro imaging displays the sucrose landscape within and along its allocation pathways. Plant Physiol. 178: 1448–1460. https://doi.org/10.1104/pp.18.00947.

      18 Gundlach‐Graham, A. and Günther, D. (2016). Toward faster and higher resolution LA‐ICPMS imaging: on the co‐evolution of la cell design and ICPMS instrumentationyoung investigators in analytical and bioanalytical science. Anal. Bioanal. Chem. 408: 2687–2695. https://doi.org/10.1007/s00216‐015‐9251‐8.

      19 Gupta, S., Rupasinghe, T., Callahan, D.L. et al. (2019). Spatio‐temporal metabolite and elemental profiling of salt stressed barley seeds during initial stages of germination by MALDI‐MSI and μ‐XRF spectrometry. Front. Plant Sci. 10: 1139. https://doi.org/10.3389/fpls.2019.01139.

      20 Jenčič, B., Jeromel, L., Ogrinc Potočnik, N. et al. (2016). Molecular imaging of cannabis leaf tissue with MeV‐SIMS method. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 371: 205–210. https://doi.org/10.1016/j.nimb.2015.10.047.

      21 Jenčič, B., Jeromel, L., Ogrinc Potočnik, N. et al. (2017). Molecular imaging of alkaloids in khat (Catha edulis) leaves with MeV‐SIMS. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 404: 140–145. https://doi.org/10.1016/j.nimb.2017.01.063.

      22 Jeromel, L., Siketić, Z., Ogrinc Potočnik, N. et al. (2014). Development of mass spectrometry by high energy focused heavy ion beam: MeV SIMS with 8 MeV Cl7+ beam. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 332: 22–27. https://doi.org/10.1016/j.nimb.2014.02.022.

      23 Kaulich, B., Gianoncelli, A., Beran, A. et al. (2009). Low‐energy X‐ray fluorescence microscopy opening new opportunities for bio‐related research. J. R. Soc. Interface 6 (Suppl 5): S641–S647. https://doi.org/10.1098/rsif.2009.0157.focus.

      24 Koren, Š., Arčon, I., Kump, P. et al. (2013). Influence of CdCl2 and CdSO4 supplementation on cd distribution and ligand environment in leaves of the cd hyperaccumulator Noccaea (Thlaspi) praecox. Plant Soil 370: 125–148. https://doi.org/10.1007/s11104‐013‐1617‐0.

      25 Lee, Y.J., Perdian, D.C., Song, Z. et al. (2012). Use of mass spectrometry for imaging metabolites in plants. Plant J. 70: 81–95. https://doi.org/10.1111/j.1365‐313X.2012.04899.x.

      26 Lim, W.L., Collins, H.M., Byrt, C.S. et al. (2020). Overexpression of HvCslF6 in barley grain alters carbohydrate partitioning plus transfer tissue and endosperm development. J. Exp. Bot. 71: 138–153. https://doi.org/10.1093/jxb/erz407.

      27 Limbeck, A., Galler, P., Bonta, M. et al. (2015). Recent advances in quantitative LA‐ICP‐MS analysis: challenges and solutions in the life sciences and environmental chemistry. Anal. Bioanal. Chem. 407: 6593–6617. https://doi.org/10.1007/s00216‐015‐8858‐0.

      28 Lu, L., Tian, S., Liao, H. et al. (2013). Analysis of metal element distributions in Rice (Oryza sativa L.) seeds and relocation during germination based on X‐ray fluorescence imaging of Zn, Fe, K, Ca, and Mn. PLoS One 8: e57360. https://doi.org/10.1371/journal.pone.0057360.

      29 Mantouvalou, I., Lachmann, T., Singh, S.P.S.P. et al. (2017). Advanced absorption correction for 3D elemental images applied to the analysis of pearl millet seeds obtained with a laboratory confocal micro X‐ray fluorescence spectrometer. Anal. Chem. 89: 5453–5460. https://doi.org/10.1021/acs.analchem.7b00373.

      30 Martínez‐Criado, G., Villanova, J., Tucoulou, R. et al. (2016). ID16B: a hard X‐ray nanoprobe beamline at the ESRF for nano‐analysis. J. Synchrotron Radiat. 23: 344–352. https://doi.org/10.1107/S1600577515019839.

      31  Mazzolini, A.P., Legge, G.J.F., and Pallaghy, C.K. (1981). The distribution of trace elements in mature wheat seed using the Melbourne proton microprobe. Nucl. Inst. Methods Phys. Res. A 191: 583–589. https://doi.org/10.1016/0029‐554X(81)91066‐1.

      32 Mazzolini, A., Pallaghy, C., and Legge, G. (1985). Quantitative microanalysis of Mn, Zn and other elements in mature wheat seed. New Phytol. 100: 1985.

      33 Miller, L.M. and Dumas, P. (2006). Chemical imaging of