Principles of Virology. Jane Flint

Читать онлайн.
Название Principles of Virology
Автор произведения Jane Flint
Жанр Биология
Серия
Издательство Биология
Год выпуска 0
isbn 9781683673583



Скачать книгу

of Henrietta Lacks did not learn about HeLa cells, or the revolution they started, until 24 years after her death. Her family members were shocked that cells from Henrietta lived in so many laboratories and that they had not been told that any cells had been taken from her.

      The story of HeLa cells is an indictment of the lack of informed consent that pervaded medical research in the 1950s. Since then, biomedical ethics have changed, and there are now strict regulations in clinical research: physicians may not take samples for research from patients without permission. Nevertheless, in early 2013, HeLa cells generated more controversy when a research group published the cells’ genome sequence. The Lacks family objected to the publication, claiming that the information could reveal private medical information about surviving family members. As a result, the sequence was withdrawn from public databases. Months later, a second HeLa cell genome sequence was published, but this time the authors were bound by an agreement brokered by the National Institutes of Health, which required an application process for any individual wishing to view the sequence.

image

       Adey A, Burton JN, Kitzman JO, Hiatt JB, Lewis AP, Martin BK, Qiu R, Lee C, Shendure J. 2013. The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line. Nature 500:207–211.

       Callaway E. 2013. Deal done over HeLa cell line. Nature 500:132–133.

       Callaway E. 23 March 2013. HeLa publication brews bioethical storm. Nature. https://www.nature.com/news/hela-publication-brews-bioethical-storm-1.12689.

       Skloot R. April 2000. Henrietta’s dance. Johns Hopkins Magazine. http://pages.jh.edu/∼jhumag/0400web/01.html.

       Skloot R. 2011. The Immortal Life of Henrietta Lacks. Broadway Books, New York, NY.

      EXPERIMENTS

       Zika virus blocks the neuronal road

      Zika virus infection during pregnancy is a cause of the human birth defect called microcephaly. Babies born with this defect have smaller heads than expected for their age and smaller brains that do not develop normally. Organotypic brain slice cultures from embryonic mice have been used to study the effect of Zika virus on brain development.

      To produce organotypic embryonic brain slice cultures, fetal mouse brains were removed, embedded in low-melting-point agarose, and thinly sliced with a vibratome. The slices were placed in cortical culture medium and then infected with Zika virus.

      When first- and second-trimester brain slice cultures were infected with different isolates of Zika virus from 1947 to 2016, reproduction was observed as determined by plaque assay. These findings demonstrate that neurotropism of Zika virus is not a recently acquired phenotype.

      The small heads observed in microcephalic children reflect a physically smaller brain—specifically, the neocortex is thinner than in a normal brain. The neocortex, the largest part of the cerebral cortex of the brain, is composed of six distinct layers of neurons, which are established during embryonic development. First, glial cells originating from progenitor cells in the ventricular zone extend their processes throughout the cortex and anchor at the pia, the outer surface of the brain. These long fibers provide a scaffold on which neurons, produced from the same progenitor cells, migrate outwards to establish the six layers of the cortex.

image

      Neuronal migration is impaired during Zika virus infection. Brain slice cultures from embryonic day 15 mice were infected with 105 PFU of Zika virus and at 4 dpi, were fixed and stained with antibody against vimentin to mark the radial glia progenitor (RGP) basal processes, which are the fibers upon which bipolar neurons migrate. ZIKV infection perturbed the RGP scaffold compared with control slices.

      Glial fibers are visible as parallel tracks in the mouse embryonic brain slice cultures stained with an antibody to vimentin, a protein component of the fibers (image, left panel). When embryonic brain slice cultures were infected with Zika virus, the structure of the glial tracks was altered. Instead of parallel tracks, the fibers assumed a twisted morphology that would not allow neurons to travel from the ventricular zone to the developing neocortex (image, right panel). Disruption of glial fibers was observed after infection with Zika viruses isolated from 1947 to 2016.

      These results suggest that Zika virus-mediated disruption of glial fibers during embryonic development contributes to microcephaly: if neurons cannot migrate to the pial surface, the neocortex will be thinner.

       Rosenfeld AB, Doobin DJ, Warren AL, Racaniello VR, Vallee RB. 2017. Replication of early and recent Zika virus isolates throughout mouse brain development. Proc Natl Acad Sci U S A 114:12273–12278.

      Monolayer and suspension cell cultures do not reproduce the cell type diversity and architecture typical of tissues and organs. One way to overcome this limitation is by the use of organotypic slice cultures, which can be produced from a variety of organs, including brain, liver, and kidney. These cultures are prepared by slicing embryonic or postnatal rodent organs into 100- to 400-micrometer slices. They are placed on substrates, such as porous or semiporous membranes, and bathed in cell culture medium. Such cultures remain viable for 1 to 2 weeks. The effect of Zika virus infection on neuronal migration has been examined in organotypic brain slice cultures derived from embryonic mice (Box 2.3).

      The differentiation of stem cells into organoids depends on growth conditions and nutrients. For example, one type of brain organoid can be established from human pluripotent stem cells by embedding the cells in a gelatinous protein mixture that resembles the extracellular environment of many tissues. In the absence of further cues, the stem cells differentiate into structures typical of many diverse brain regions, including the cortex. In contrast, the production of intestinal organoids requires agonists of a particular signal transduction pathway. Current attempts to improve organoid cultures include the addition of immune cells, vasculature, and commensal microorganisms, to more accurately reflect the details of tissue and organ architectures.