Fundamentals of Analytical Toxicology. Robin Whelpton

Читать онлайн.
Название Fundamentals of Analytical Toxicology
Автор произведения Robin Whelpton
Жанр Биология
Серия
Издательство Биология
Год выпуска 0
isbn 9781119122371



Скачать книгу

the case of plasma digoxin, and even ng L–1 (parts per million million) in the case of the potent opioid carfentanil. The stability of the analytes in biological samples also varies considerably, ranging from a few minutes for protease sensitive peptides and esters such as aspirin and diamorphine, to several years for some other drugs and pesticides.

      A major difficulty in writing any textbook is deciding on the order of presentation. Having taken account not only of reviewer comments on the first edition, but also of the advances in analytical methods on the one hand, and the range of analyses that may now be required on the other, the material has been updated, expanded and presented in a new order. However, much of the discussion of the historical development of analytical toxicology present in the first edition has been removed to save space. On the other hand, some discussion of more traditional methods such as thin-layer chromatography has been retained for the simple reason that such methods are still used in many parts of the world.

      1 1 Flanagan RJ, Braithwaite R, Brown SS, Widdop B, De Wolff FA. Basic Analytical Toxicology. Geneva: WHO, 1995; available at www.who.int/ipcs/publications/training_poisons/analytical_toxicology.pdf

      2 2 Flanagan RJ, Taylor A, Watson ID, Whelpton R. Fundamentals of Analytical Toxicology. Chichester: Wiley, 2007

      This book is intended for use by scientists trained appropriately in laboratory work. Care should be taken to ensure the safe handling of all chemical and biological materials, and particular attention should be given to the possible occurrence of allergy, infection, fire, explosion, or poisoning (including transdermal absorption or inhalation of toxic vapours). Readers are expected to consult current local health and safety regulations and to adhere to them.

      We have followed IUPAC nomenclature for chemical names except when Chemical Abstracts nomenclature or trivial names are more readily understood. With regard to symbols, we have adopted the convention that variables and constants are italicized, but labels and mathematical operators are not. Thus, for example, the acid dissociation constant is written Ka, K being the variable, a being a label to denote that it is an acid dissociation constant. The notation for the negative logarithm of Ka is pKa – p is a mathematical symbol and is not italicized. Where the subscript is a variable then it is italicized, so the concentration at time t, is Ct, but the concentration at time 0 is C0. Note especially that relative molecular mass (molecular weight, relative molar mass), the ratio of the mass of an atom or molecule to the unified atomic mass unit (u), is referred to throughout as Mr. The unified atomic mass unit, sometimes referred to as the dalton (Da), is defined as one twelfth of the mass of one atom of 12C. The symbol amu for atomic mass unit can sometimes be found, particularly in older works. The unified atomic mass unit is not a Système International (SI) unit of mass, although it is (only by that name, and only with the symbol u) accepted for use with SI.

      As to drugs and pesticides, we have used recommended International Non-proprietary Name (rINN) or proposed International Non-proprietary Name (pINN) whenever possible. For misused drugs, the most common chemical names or abbreviations have been used. It is worth noting that for rINNs and chemical nomenclature, it is now general policy to use ‘f’ for ‘ph’ (e.g. sulfate not sulphate), ‘t’ for ‘th’ (e.g. chlortalidone not chlorthalidone) and ‘i’ for ‘y' (mesilate not mesylate for methanesulfonate, for example). However, so many subtle changes have been introduced that it is difficult to ensure compliance with all such changes. Names that may be encountered include the British Approved Name (BAN), the British Pharmacopoeia (BP) name, the United States Adopted Name (USAN), the United States National Formulary (USNF) name, and the United States Pharmacopoeia (USP) name. Where the rINN is markedly different from common US usage, for example acetaminophen rather than paracetamol, meperidine instead of pethidine, the alternative is given in parentheses at first use and in the index.

      Isotopically-labelled compounds are indicated using the usual convention of square brackets to denote the substituted atoms, and site of substitution where known. For example, [2H3-N-methyl]-hyoscine indicates that the hydrogen atoms in the N-methyl group have been substituted by deuterium – this should not be confused with N-methylhyoscine (methscopolamine).

      A useful source of information on drug and poison nomenclature is the Merck Index Online (www.rsc.org/Merck-Index/). Chemical Abstracts Service (CAS) Registry Numbers (RN) provide a unique identifier for individual compounds, but it is important to note that salts, hydrates, racemates, etc., each have their own RNs. Similarly, when discussing dosages we have tried to be clear when referring to salts, and when to free acids, bases, or quaternary ammonium compounds.

      We emphasize that cross-referral to an appropriate local or national formulary is mandatory before any patient treatment is initiated or altered. Proprietary names must be approached with caution – the same name is sometimes used for different products in different countries.

      Uniform resource locators (URLs, web addresses) were correct at the time of printing. If the cited links are broken, readers should use an appropriate search engine or other resource to find the current URL unless directed otherwise.

      In parts of Europe some laboratories report analytical toxicology data in ‘amount concentration’ using what have become known as SI molar