Название | Fundamentals of Numerical Mathematics for Physicists and Engineers |
---|---|
Автор произведения | Alvaro Meseguer |
Жанр | Математика |
Серия | |
Издательство | Математика |
Год выпуска | 0 |
isbn | 9781119425755 |
Table 1.1 Iterates resulting from using bisection
and Newton–Raphson when solving (1.2), with added shading of converged digits.
|
Bisection |
Newton–Raphson |
|
|
0 | 1.5 | 1.5 |
|
|
1 | 1.75 | 1.869 565 215 355 94 |
|
|
2 | 1.875 | 1.799 452 405 786 30 |
|
|
3 | 1.812 5 | 1.796 327 970 874 37 |
|
|
4 | 1.781 25 | 1.796 321 903 282 30 |
|
|
5 | 1.796 875 | 1.796 321 903 259 44 |
|
|
6 | 1.789 062 5 | 1.796 321 903 259 44 |
|
|
7 | 1.792 968 75 |
|
||
8 | 1.794 921 875 |
|
||
|
|
|
||
46 | 1.796 321 903 259 45 |
|
||
47 | 1.796 321 903 259 44 | |||
48 | 1.796 321 903 259 44 |
1.4 Order of a Root‐Finding Method
From Table 1.1, it is clear that the Newton–Raphson algorithm converges much faster than the bisection method. In numerical mathematics it is crucial