Fundamentals of Numerical Mathematics for Physicists and Engineers. Alvaro Meseguer

Читать онлайн.
Название Fundamentals of Numerical Mathematics for Physicists and Engineers
Автор произведения Alvaro Meseguer
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119425755



Скачать книгу

on id="u859d1dff-6f2f-5d2f-b72d-2c252fa51105">

      

      Table of Contents

      1  Cover

      2  About the Author

      3  Preface

      4  Acknowledgments

      5  Part I: 1 Solution Methods for Scalar Nonlinear Equations 1.1 Nonlinear Equations in Physics 1.2 Approximate Roots: Tolerance 1.3 Newton's Method 1.4 Order of a Root‐Finding Method 1.5 Chord and Secant Methods 1.6 Conditioning 1.7 Local and Global Convergence 2 Polynomial Interpolation 2.1 Function Approximation 2.2 Polynomial Interpolation 2.3 Lagrange's Interpolation 2.4 Barycentric Interpolation 2.5 Convergence of the Interpolation Method 2.6 Conditioning of an Interpolation 2.7 Chebyshev's Interpolation 3 Numerical Differentiation 3.1 Introduction 3.2 Differentiation Matrices 3.3 Local Equispaced Differentiation 3.4 Accuracy of Finite Differences 3.5 Chebyshev Differentiation 4 Numerical Integration 4.1 Introduction 4.2 Interpolatory Quadratures 4.3 Accuracy of Quadrature Formulas 4.4 Clenshaw–Curtis Quadrature 4.5 Integration of Periodic Functions 4.6 Improper Integrals

      6  Part II: 5 Numerical Linear Algebra 5.1 Introduction 5.2 Direct Linear Solvers 5.3 LU Factorization of a Matrix 5.4 LU with Partial Pivoting 5.5 The Least Squares Problem 5.6 Matrix Norms and Conditioning 5.7 Gram-Schmidt Orthonormalization 5.8 Matrix‐Free Krylov Solvers 6 Systems of Nonlinear Equations 6.1 Newton's Method for Nonlinear Systems 6.2 Nonlinear Systems with Parameters 6.3 Numerical Continuation (Homotopy) 7 Numerical Fourier Analysis 7.1 The Discrete Fourier Transform 7.2 Fourier Differentiation 8 Ordinary Differential Equations 8.1 Boundary Value Problems 8.2 The Initial Value Problem

      7  1 Solutions to Problems and Exercises Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8

      8  Glossary of Mathematical Symbols

      9  Bibliography

      10  Index

      11  End User License Agreement

      List of Tables

      1 Chapter 1Table 1.1 Iterates resulting from using bisection

and Newton–Raphson
when ...

      2 Chapter 2Table 2.1 Runge's counterexample.

      3 Chapter 4Table 4.1 Coefficients

of open and closed Newton–Cotes quadrature formulas (...Table 4.2 Trapezoidal
and Simpson
composite quadrature approximations of