Электронные и оптоэлектронные ИС, их характеристики: обзор преимуществ и недостатков. Цифровая микрооптоэлектроника. Николай Петрович Проскурин

Читать онлайн.



Скачать книгу

объектами над проводными линиями – 23.

      1.3. Твердотельные оптопары, их разновидности, анализ конструкций – 29.

      1.4. Оценка и выбор базиса оптоэлектронной логики на основе анализа схем квазиимпульснопотенциального типа – 39.

      1.5. Выводы по разделу – 46.

      СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ (часть 1) – 49.

      ПРИЛОЖЕНИЕ А – 52.

      ВВЕДЕНИЕ

      Актуальность темы. Обработка оптической информации получила широкое применение в технике, в частности – в приборах передачи информационных потоков, в устройствах управления технологическим и бортовым оборудованием. Это связано с преимуществами оптических и оптоэлектронных устройств (средств и способов связи на их основе) над электрическими. В основе оптоэлектроники лежат эффекты взаимодействия между электронейтральными электромагнитными волнами (или фотонами) и электронами веществ (преимущественно твердых тел). Физическую основу оптоэлектроники составляют явления, связывающие оптические и электронные процессы – излучения и поглощения электромагнитных колебаний. Функциональное назначение оптоэлектронных устройств состоит в решении задач информатики: генерации информации на основе внешних воздействий и превращении ее в оптические (или электрические) сигналы, а также ее перенос, преобразование (в т.ч. логическое), хранение, отображение (с возможно-стью ее считывания, записи, стирания, перекодирования, др.). Технологическую основу оптоэлектроники определяют концепции микро- и наноэлектроники. В устройствах на основе систем излучатель – фотоприемник, соединенных с волоконнооптическим каналом (кабелем), оптический сигнал от излучателя способен без значительных потерь проходить большие расстояния. Устройства и схемы обработки оптической цифровой информации получили широкое применение. Развитие локальных, региональных, территориальных, глобальных сетей связи основано на внедрении волоконно-оптических линий связи (ВОЛС). Логическая обработка потоков оптических цифровых сигналов, которые передаются по ним, базируется на использовании их отображений в виде электрических сигналов (после преобразования типа излучение – фототок: L→Е с помощью фотоприемников). Для детектирования оптических цифровых сигналов используют фоточувствительные устройства – твердотельные полупроводниковые структуры: фотодиоды, фототранзисторы. Усиленные и сформированные с помощью усилителей фототока в виде потоков электрических сигналов, они обрабатываются полупроводниковыми цифровыми интегральными схемами (ИС) на базе схем вентилей Т2Л, И2Л, ЭСЛ, Т2ЛШ, МОП. Для получения выходных оптических цифровых сигналов (преобразования типа ток – излучение: Е→L) применяют другие схемы. В них усиленные цифровые сигналы из выходов ИС модулируют ток излучателей на полупроводниковых структурах, к которым относят инжекционные лазеры (ИЛ), лазерные диоды (ЛД) и светодиоды (СД). Оптический цифровой сигнал передается на значительные расстояния по волоконно-оптическим каналам, кото-рые созданы на основе диэлектрических оптически прозрачных материалов. С по-мощью оптоэлектронных устройств типа оптронов (оптопар), которые включают в себя твердотельные излучатели и фотоприемники, обеспечиваются многочисленные