Пояснюючи світ. Стивен Вайнберг

Читать онлайн.
Название Пояснюючи світ
Автор произведения Стивен Вайнберг
Жанр Прочая образовательная литература
Серия
Издательство Прочая образовательная литература
Год выпуска 2015
isbn 978-617-12-6659-9, 978-617-12-5103-8, 978-617-12-6658-2, 978-617-12-6657-5



Скачать книгу

цей стиль ми пізніше знаходимо в роботах Евкліда. Фактично Евдоксу приписують багато моментів, викладених в Евклідових «Началах».

      Хоча розвиток математики Евдоксом та піфагорійцями був великим інтелектуальним досягненням, для природничих наук він мав як позитивні, так і негативні наслідки. Насамперед дедуктивний стиль математичних робіт, виплеканий в Евклідових «Началах», нескінченно імітували дослідники природничих наук там, де це було не надто доречно. Як ми побачимо нижче, роботи Арістотеля з природничих наук містять мало математики, але часом схожі на пародію на математичні міркування, як у його описі руху у «Фізиці»: «A тоді проходитиме крізь B у час C, а також крізь D, що тонше, у час E (якщо довжина B дорівнює D) пропорційно густині тіла, що заважає. Нехай B буде вода, а D – повітря»6. Можливо, найвидатнішою роботою з давньогрецької фізики є «Про плаваючі тіла» Архімеда, яку ми розглянемо в розділі 4. Цей твір написано як математичний текст із незаперечними постулатами, за якими йдуть виведені пропозиції. Архімед був достатньо розумний, щоб вибрати правильні постулати, але наукове дослідження чесніше подавати як плетиво дедукції, індукції та здогадок.

      Важливішим за питання стилю, хоч і пов’язаним із ним, є заохочувана математиками хибна мета: досягти достовірної істини за допомогою самого лише інтелекту. У дискусії про освіту філософів-царів у «Державі» Платон наводить аргумент Сократа, що астрономію слід вивчати так само, як і геометрію. Згідно із Сократом, дивитися в небо може бути корисно як поштовх для інтелекту так само, як дивитися на геометричну діаграму може бути корисно в математиці, але в обох випадках реальне знання приходить виключно через думку. Сократ у «Державі» пояснює, що «тими розмаїтими небесними узорами слід послуговуватися як прикладами у вивченні речей правдивих»7.

      Математика є засобом, за допомогою якого ми виводимо наслідки фізичних принципів. Ба більше, це невід’ємна мова, якою виражені принципи фізичної науки. Вона часто навіює нові ідеї щодо природничих наук, а потреби науки, у свою чергу, часто просувають розвиток математики. Робота фізика-теоретика Едварда Віттена забезпечила такий великий прогрес у математиці, що 1990 року він був нагороджений однією з найвищих нагород у галузі математики – медаллю Філдса. Але математика не є природничою наукою. Сама по собі математика без спостереження нічого не може розповісти нам про світ. А спостереженням за світом математичні теореми не можна ані підтвердити, ані спростувати.

      У Стародавньому світі й навіть на початку нашого часу цього не знали. Ми вже бачили, що Платон та піфагорійці вважали такі математичні об’єкти, як числа чи трикутники, основними складниками природи, а нижче побачимо, що деякі філософи уявляли собі математичну астрономію галуззю математики, а не природничих наук.

      Сьогодні відмінність між математикою та природничими науками встановлена доволі чітко. Для нас залишається