Укрощение бесконечности. История математики от первых чисел до теории хаоса. Иэн Стюарт

Читать онлайн.
Название Укрощение бесконечности. История математики от первых чисел до теории хаоса
Автор произведения Иэн Стюарт
Жанр Математика
Серия
Издательство Математика
Год выпуска 2008
isbn 978-5-00117-455-4



Скачать книгу

очередное утверждение должно быть подкреплено отсылкой к предыдущим и быть выводом из них. Евклид понимал, что этот процесс не может идти вглубь до бесконечности: он должен с чего-то начинаться, и начальное утверждение не требует доказательств: иначе пришлось бы начинать действия с чего-то еще.

      Чтобы запустить процесс, Евклид составил несколько основных определений: четких, ясных утверждений для таких основных «технических» понятий, как линия или круг, по сути очевидных. Типичный пример такого определения: тупым называется угол больше прямого.

      Эти определения предоставили терминологию, необходимую для формулировки не требующих доказательств утверждений, которые Евклид разделил на два вида: общие утверждения и постулаты. Типичное общее утверждение: объекты, равные одному и тому же, равны и между собой. А типичный постулат: все прямые углы равны между собой.

      Мы уже объединили оба эти типа утверждений в один и называем их аксиомами. Математические аксиомы – исходные утверждения, не требующие доказательств. Мы считаем, что аксиомы – как правила игры, и верим, что они всегда выполняются. Мы уже не задаемся вопросом, верны ли эти правила, – мы уже не думаем, что эта игра единственная в своем роде. Всякий, кто собирается участвовать в какой-то конкретной игре, должен соблюдать ее правила; иначе он волен выбрать другую, но в ней правила первой не будут работать.

ПРАВИЛЬНЫЕ МНОГОГРАННИКИ

      Правильный многогранник, или платоново тело, – выпуклый многогранник, который состоит из равных граней в виде правильных многоугольников и имеет равное число ребер, выходящих из каждой вершины. Пифагорейцы описывали пять таких правильных многогранников.

      Пять платоновых тел

      • Тетраэдр образован четырьмя правильными треугольниками.

      • Куб (гексаэдр) образован шестью квадратами.

      • Октаэдр образован восемью правильными треугольниками.

      • Додекаэдр образован 12 правильными пятиугольниками.

      • Икосаэдр образован 20 правильными треугольниками.

      Их связывали с четырьмя стихиями Античности: землей, воздухом, огнем и водой – и с пятым элементом – квинтэссенцией.

      Во времена Евклида и позже, почти 2000 лет, математикам такое не могло и в голову прийти. Практически все относились к аксиомам как к самоочевидным истинам, чью незыблемость никто не посмел бы оспорить. Евклид недаром приложил все свои таланты, чтобы сделать аксиомы именно такими, – и почти преуспел. Однако одна – аксиома параллельности – оказалась особенно сложной и не такой уж очевидной. Многие ученые пытались вывести ее из более простых общих понятий. Позже мы увидим, к каким поразительным открытиям привели эти попытки.

      Опираясь на эти простые утверждения, «Начала» обеспечивали доказательства всё более сложных геометрических теорем. Например, в книге I, теореме 5 доказывается, что углы у основания равнобедренного треугольника (у которого