Укрощение бесконечности. История математики от первых чисел до теории хаоса. Иэн Стюарт

Читать онлайн.
Название Укрощение бесконечности. История математики от первых чисел до теории хаоса
Автор произведения Иэн Стюарт
Жанр Математика
Серия
Издательство Математика
Год выпуска 2008
isbn 978-5-00117-455-4



Скачать книгу

можно представить как два отрезка, один длиной в две единицы и другой в три (соотношение 2:3). √2 можно представить парой, составленной диагональю единичного квадрата и его стороной (и это будет соотношение √2:1). Обратите внимание: здесь оба отрезка могут быть построены геометрически.

      Здесь главный секрет – определить, когда эти два соотношения будут равны. Когда a: b = c: d? Греки не имели такой системы счисления, которая позволила бы им сделать это простым делением длины одного отрезка на длину другого, и вынуждены были сравнивать a: b с c: d. А Евдокс предложил громоздкий, но точный способ сравнения, укладывающийся в условности греческой геометрии. Идея была в том, чтобы сравнивать целочисленные произведения ma и nc. Этого можно было достичь, соединяя m копий а непрерывной цепью и точно так же n копий b, а затем использовать те же множители m и n для сравнения mb и nd. Евдокс рассуждал: если соотношения a: b и c: d не равны, мы можем подобрать m и n так, чтобы увеличить разницу до такой степени, что ma > nc, но mb < nd. Действительно, так мы можем установить равенство соотношений.

      Равны ли соотношения a: b и c: d?

      Такое определение требует специальных навыков, зато прекрасно вписывается в ограниченные возможности греческой геометрии. Так или иначе, оно работает; более того, оно позволило греческим геометрам взять теоремы, легко доказуемые с помощью рациональных отношений, чтобы расширить их действие до иррациональных.

      Часто они использовали так называемый метод исчерпывания (или, иначе, истощения), в котором некоторые видят предка современного метода пределов и интегрального исчисления. Этим методом они доказали, что площадь круга пропорциональна квадрату его радиуса. Доказательство основывалось на простом факте, открытом Евклидом: площади двух подобных многоугольников соотносятся в той же пропорции, что и квадраты их соответствующих сторон. Круг представлял проблему: он не был многоугольником. Тогда греки построили две последовательности многоугольников: одну помещавшуюся внутри круга, а вторую – снаружи. Каждый следующий многоугольник всё ближе подходит к кругу, и из метода исчерпывания, доведенного до совершенства Евдоксом, следует, что площади самых близких к кругу многоугольников стремятся к его площади и в итоге совпадут с ней.

      Евклид

      Самым известным греческим геометром, хотя, возможно, и не самым талантливым математиком, считается Евклид Александрийский. Он внес огромный вклад в историю науки, собрав труды предшественников и сведя их воедино, и его «Начала» – шедевр всех времен и народов. Евклид создал не меньше десяти трудов по математике, из которых до нас дошло только пять, и те в поздних копиях, в виде фрагментов. До наших дней не дожил ни один подлинный документ из Древней Греции. Пять имеющихся текстов Евклида называются «Начала», «О делении», «Данные», «Явления» и «Оптика».

      «Начала» считаются основным трудом Евклида, который окончательно утвердил разделение