Фундаментальная радиохимия. Николай Дмитриевич Бетенеков

Читать онлайн.
Название Фундаментальная радиохимия
Автор произведения Николай Дмитриевич Бетенеков
Жанр Учебная литература
Серия
Издательство Учебная литература
Год выпуска 2018
isbn



Скачать книгу

относительно легких четно-четных радионуклидов, имеющих массовое число менее 240, как правило, характерен альфа-распад с образованием дочернего нуклида в основном состоянии. При распаде ядер других типов чаще всего образуются нуклиды с возбужденным состоянием дочернего ядра.

      В первом случае радионуклиды, например, 210Po, испускают альфа-частицы с определенной энергией. Во втором случае радионуклид обычно испускает группу альфа-частиц с несколько различными, но вполне определенными значениями энергии. Таким образом, спектры излучения альфа-частиц являются дискретными.

      Помимо ядер гелия α-активные радионуклиды, как правило, излучают еще и γ-кванты («жесткое» электромагнитное излучение), порождаемое возбужденными дочерними ядрами. Спектр γ-излучения тоже дискретен.

      Примером радионуклида, имеющего сложный дискретный спектр α– и γ-излучения, является один из природных изотопов тория, 228Th (рис.1).

      Диапазон энергий альфа-частиц, испускаемых радионуклидами, довольно широк: от 1,83 МэВ у 144Nd до 11,7 МэB у 212Po, но у подавляющего числа α-активных радионуклидов эта энергия находится в интервале значений 4–9 МэВ. За небольшими исключениями значения периодов полураспада α– активных ядер лежат внутри громадного диапазона: ~10–7с < T1/2< – 1010 лет, но, например, у 144Nd даже T1/2 = 5•1015 лет.

Бета-распад

      Данный вид распада представляет собой ядерное превращение радионуклида в нуклид-изобар; при этом значение заряда ядра (Z) изменяется на ±1. При βраспаде в ядре происходит превращение одного из нейтронов в протон:

      1n1p + e+ v̄ + ΔE ,

      где n и p соответственно символы нейтрона и протона; e– электрон ядерного происхождения, т.е. βчастица; – антинейтрино. При этом образовавшийся протон остается в ядре, которое становится ядром нового (образовавшегося дочернего) радионуклида, а электрон (βчастица) и антинейтрино покидают ядро, что и составляет бета-излучение.

      Этот процесс не следует отождествлять с «распадом» свободного нейтрона, который имеет период полураспада – 12,5 минут. В случае β- распада скорость превращения нейтрона в протон внутри ядра для каждого радионуклида является строго индивидуальной характеристикой; не существует двух различных радионуклидов с одинаковыми значениями периода полураспада.

      Известен так называемый простой бета-распад, при котором все ядра радионуклида после испускания βчастицы переходят в одинаковое энергетическое состояние (основное состояние). Примером такого случая может служить распад одного из радионуклидов фосфора: .

      Более сложным является случай, когда ядра, образовавшиеся вследствие распада, оказываются в различных возбужденных состояниях, что в соответствии с законами квантовой механики моделируется несколькими дискретными уровнями энергии; среди них может оказаться и основной уровень ядра. В большинстве случаев переход нуклида из возбужденного состояния в основное происходит путем испускания (эмиссии) гамма-квантов, уносящих избыток энергии (подробнее об этом ниже).

      Типичный энергетический спектр