The Variation of Animals and Plants Under Domestication, Volume II (of 2). Darwin Charles

Читать онлайн.
Название The Variation of Animals and Plants Under Domestication, Volume II (of 2)
Автор произведения Darwin Charles
Жанр Зарубежная классика
Серия
Издательство Зарубежная классика
Год выпуска 0
isbn



Скачать книгу

of blacks, whites, and mulattoes would be equal. In 91 years the whites would be 1-10th, the blacks 1-10th, and the mulattoes, or people of intermediate degrees of colour, 8-10ths of the whole number. In three centuries not 1-100th part of the whites would exist."

      When one of two mingled races exceeds the other greatly in number, the latter will soon be wholly, or almost wholly, absorbed and lost.185 Thus European pigs and dogs have been largely introduced into the islands of the Pacific Ocean, and the native races have been absorbed and lost in the course of about fifty or sixty years;186 but the imported races no doubt were favoured. Rats may be considered as semi-domesticated animals. Some snake-rats (Mus alexandrinus) escaped in the Zoological Gardens of London, "and for a long time afterwards the keepers frequently caught cross-bred rats, at first half-breds, afterwards with less and less of the character of the snake-rat, till at length all traces of it disappeared."187 On the other hand, in some parts of London, especially near the docks, where fresh rats are frequently imported, an endless variety of intermediate forms may be found between the brown, black, and snake rat, which are all three usually ranked as distinct species.

      How many generations are necessary for one species or race to absorb another by repeated crosses has often been discussed;188 and the requisite number has probably been much exaggerated. Some writers have maintained that a dozen, or score, or even more generations, are necessary; but this in itself is improbable, for in the tenth generation there will be only 1-1024th part of foreign blood in the offspring. Gärtner found,189 that with plants one species could be made to absorb another in from three to five generations, and he believes that this could always be effected in from six to seventh generations. In one instance, however, Kölreuter190 speaks of the offspring of Mirabilis vulgaris, crossed during eight successive generations by M. longiflora, as resembling this latter species so closely, that the most scrupulous observer could detect "vix aliquam notabilem differentiam;" – he succeeded, as he says, "ad plenariam fere transmutationem." But this expression shows that the act of absorption was not even then absolutely complete, though these crossed plants contained only the 1-256th part of M. vulgaris. The conclusions of such accurate observers as Gärtner and Kölreuter are of far higher worth than those made without scientific aim by breeders. The most remarkable statement which I have met with of the persistent endurance of the effects of a single cross is given by Fleischmann,191 who, in reference to German sheep, says "that the original coarse sheep have 5500 fibres of wool on a square inch; grades of the third or fourth Merino cross produced about 8000, the twentieth cross 27,000, the perfect pure Merino blood 40,000 to 48,000." So that in this case common German sheep crossed twenty times successively with Merinos have not by any means acquired wool as fine as that of the pure breed. In all cases, the rate of absorption will depend largely on the conditions of life being favourable to any particular character; and we may suspect that there would be under the climate of Germany a constant tendency to degeneration in the wool of Merinos, unless prevented by careful selection; and thus perhaps the foregoing remarkable case may be explained. The rate of absorption must also depend on the amount of distinguishable difference between the two forms which are crossed, and especially, as Gärtner insists, on prepotency of transmission in the one form over the other. We have seen in the last chapter that one of two French breeds of sheep yielded up its character, when crossed with Merinos, very much slower than the other; and the common German sheep referred to by Fleischmann may present an analogous case. But in all cases there will be during many subsequent generations more or less liability to reversion, and it is this fact which has probably led authors to maintain that a score or more of generations are requisite for one race to absorb another. In considering the final result of the commingling of two or more breeds, we must not forget that the act of crossing in itself tends to bring back long-lost characters not proper to the immediate parent-forms.

      With respect to the influence of the conditions of life on any two breeds which are allowed to cross freely, unless both are indigenous and have long been accustomed to the country where they live, they will, in all probability, be unequally affected by the conditions, and this will modify the result. Even with indigenous breeds, it will rarely or never occur that both are equally well adapted to the surrounding circumstances; more especially when permitted to roam freely, and not carefully tended, as will generally be the case with breeds allowed to cross. As a consequence of this, natural selection will to a certain extent come into action, and the best fitted will survive, and this will aid in determining the ultimate character of the commingled body.

      How long a time it would require before such a crossed body of animals would assume within a limited area a uniform character no one can say; that they would ultimately become uniform from free intercrossing, and from the survival of the fittest, we may feel assured; but the character thus acquired would rarely or never, as we may infer from the several previous considerations, be exactly intermediate between that of the two parent-breeds. With respect to the very slight differences by which the individuals of the same sub-variety, or even of allied varieties, are characterised, it is obvious that free crossing would soon obliterate such small distinctions. The formation of new varieties, independently of selection, would also thus be prevented; except when the same variation continually recurred from the action of some strongly predisposing cause. Hence we may conclude that free crossing has in all cases played an important part in giving to all the members of the same domestic race, and of the same natural species, uniformity of character, though largely modified by natural selection and by the direct action of the surrounding conditions.

       On the possibility of all organic beings occasionally intercrossing.– But it may be asked, can free crossing occur with hermaphrodite animals and plants? All the higher animals, and the few insects which have been domesticated, have separated sexes, and must inevitably unite for each birth. With respect to the crossing of hermaphrodites, the subject is too large for the present volume, and will be more properly treated in a succeeding work. In my 'Origin of Species,' however, I have given a short abstract of the reasons which induce me to believe that all organic beings occasionally cross, though perhaps in some cases only at long intervals of time.192 I will here just recall the fact that many plants, though hermaphrodite in structure, are unisexual in function; – such as those called by C. K. Sprengel dichogamous, in which the pollen and stigma of the same flower are matured at different periods; or those called by me reciprocally dimorphic, in which the flower's own pollen is not fitted to fertilise its own stigma; or again, the many kinds in which curious mechanical contrivances exist, effectually preventing self-fertilisation. There are, however, many hermaphrodite plants which are not in any way specially constructed to favour intercrossing, but which nevertheless commingle almost as freely as animals with separated sexes. This is the case with cabbages, radishes, and onions, as I know from having experimented on them: even the peasants of Liguria say that cabbages must be prevented "from falling in love" with each other. In the orange tribe, Gallesio193 remarks that the amelioration of the various kinds is checked by their continual and almost regular crossing. So it is with numerous other plants.

      Nevertheless some cultivated plants can be named which rarely intercross, as the common pea, or which never intercross, as I have reason to believe is the case with the sweet-pea (Lathyrus odoratus); yet the structure of these flowers certainly favours an occasional cross. The varieties of the tomato and aubergine (Solanum) and pimenta (Pimenta vulgaris?) are said194 never to cross, even when growing alongside each other. But it should be observed that these are all exotic plants, and we do not know how they would behave in their native country when visited by the proper insects.

      It must also be admitted that some few natural species appear under our present state of knowledge to be perpetually self-fertilised, as in the case of the Bee Ophrys (O. apifera), though adapted in its structure to be occasionally crossed. The Leersia oryzoides produces minute enclosed flowers which cannot possibly be crossed, and these alone, to



<p>185</p>

Dr. W. F. Edwards, in his 'Charactères Physiolog. des Races Humaines,' p. 23, first called attention to this subject, and ably discussed it.

<p>186</p>

Rev. D. Tyerman, and Bennett, 'Journal of Voyages,' 1821-1829, vol. i. p. 300.

<p>187</p>

Mr. S. J. Salter, 'Journal Linn. Soc.,' vol. vi., 1862, p. 71.

<p>188</p>

Sturm, 'Ueber Racen, &c.,' 1825, s. 107. Bronn, 'Geschichte der Natur.,' b. ii. s. 170, gives a table of the proportions of blood after successive crosses. Dr. P. Lucas, 'l'Hérédité Nat.,' tom. ii. p. 308.

<p>189</p>

'Bastarderzeugung,' s. 463, 470.

<p>190</p>

'Nova Acta Petrop.,' 1794, p. 393: see also previous volume.

<p>191</p>

As quoted in the 'True Principles of Breeding,' by C. H. Macknight and Dr. H. Madden, 1865, p. 11.

<p>192</p>

With respect to plants, an admirable essay on this subject (Die Geschlechter-Vertheilung bei den Pflanzen: 1867) has lately been published by Dr. Hildebrand, who arrives at the same general conclusions as I have done.

<p>193</p>

'Teoria della Riproduzione Vegetal,' 1816, p. 12.

<p>194</p>

Verlot, 'Des Variétés,' 1865, p. 72.