The Variation of Animals and Plants Under Domestication, Volume II (of 2). Darwin Charles

Читать онлайн.
Название The Variation of Animals and Plants Under Domestication, Volume II (of 2)
Автор произведения Darwin Charles
Жанр Зарубежная классика
Серия
Издательство Зарубежная классика
Год выпуска 0
isbn



Скачать книгу

hybrids.

      I am aware that such cases as the foregoing have been ascribed by various authors, not to one species, race, or individual being prepotent over the other in impressing it character on its crossed offspring, but to such rules as that the father influences the external characters and the mother the internal or vital organs. But the great diversity of the rules given by various authors almost proves their falseness. Dr. Prosper Lucas has fully discussed this point, and has shown153 that none of the rules (and I could add others to those quoted by him) apply to all animals. Similar rules have been enounced for plants, and have been proved by Gärtner154 to be all erroneous. If we confine our view to the domesticated races of a single species, or perhaps even to the species of the same genus, some such rules may hold good; for instance, it seems that in reciprocally crossing various breeds of fowls the male generally gives colour;155 but conspicuous exceptions have passed under my own eyes. In sheep it seems that the ram usually gives its peculiar horns and fleece to its crossed offspring, and the bull the presence or absence of horns.

      In the following chapter on Crossing I shall have occasion to show that certain characters are rarely or never blended by crossing, but are transmitted in an unmodified state from either parent-form; I refer to this fact here because it is sometimes accompanied on the one side by prepotency, which thus acquires the false appearance of unusual strength. In the same chapter I shall show that the rate at which a species or breed absorbs and obliterates another by repeated crosses, depends in chief part on prepotency in transmission.

      In conclusion, some of the cases above given, – for instance, that of the trumpeter pigeon, – prove that there is a wide difference between mere inheritance and prepotency. This latter power seems to us, in our ignorance, to act in most cases quite capriciously. The very same character, even though it be an abnormal or monstrous one, such as silky feathers, may be transmitted by different species, when crossed, either with prepotent force or singular feebleness. It is obvious, that a purely-bred form of either sex, in all cases in which prepotency does not run more strongly in one sex than the other, will transmit its character with prepotent force over a mongrelized and already variable form.156 From several of the above-given cases we may conclude that mere antiquity of character does not by any means necessarily make it prepotent. In some cases prepotency apparently depends on the same character being present and visible in one of the two breeds which are crossed, and latent or invisible in the other breed; and in this case it is natural that the character which is potentially present in both should be prepotent. Thus, we have reason to believe that there is a latent tendency in all horses to be dun-coloured and striped; and when a horse of this kind is crossed with one of any other colour, it is said that the offspring are almost sure to be striped. Sheep have a similar latent tendency to become dark-coloured, and we have seen with what prepotent force a ram with a few black spots, when crossed with sheep of various breeds, coloured its offspring. All pigeons have a latent tendency to become slaty-blue, with certain characteristic marks, and it is known that, when a bird thus coloured is crossed with one of any other colour, it is most difficult afterwards to eradicate the blue tint. A nearly parallel case is offered by those black bantams which, as they grow old, develop a latent tendency to acquire red feathers. But there are exceptions to the rule: hornless breeds of cattle possess a latent capacity to reproduce horns, yet when crossed with horned breeds they do not invariably produce offspring bearing horns.

      We meet with analogous cases with plants. Striped flowers, though they can be propagated truly by seed, have a latent tendency to become uniformly coloured, but when once crossed by a uniformly coloured variety, they ever afterwards fail to produce striped seedlings.157 Another case is in some respects more curious: plants bearing peloric or regular flowers have so strong a latent tendency to reproduce their normally irregular flowers, that this often occurs by buds when a plant is transplanted into poorer or richer soil.158 Now I crossed the peloric snapdragon (Antirrhinum majus), described in the last chapter, with pollen of the common form; and the latter, reciprocally, with peloric pollen. I thus raised two great beds of seedlings, and not one was peloric. Naudin159 obtained the same result from crossing a peloric Linaria with the common form. I carefully examined the flowers of ninety plants of the crossed Antirrhinum in the two beds, and their structure had not been in the least affected by the cross, except that in a few instances the minute rudiment of the fifth stamen, which is always present, was more fully or even completely developed. It must not be supposed that this entire obliteration of the peloric structure in the crossed plants can be accounted for by any incapacity of transmission; for I raised a large bed of plants from the peloric Antirrhinum, artificially fertilised by its own pollen, and sixteen plants, which alone survived the winter, were all as perfectly peloric as the parent-plant. Here we have a good instance of the wide difference between the inheritance of a character and the power of transmitting it to crossed offspring. The crossed plants, which perfectly resembled the common snapdragon, were allowed to sow themselves, and, out of a hundred and twenty-seven seedlings, eighty-eight proved to be common snapdragons, two were in an intermediate condition between the peloric and normal state, and thirty-seven were perfectly peloric, having reverted to the structure of their one grandparent. This case seems at first sight to offer an exception to the rule formerly given, namely, that a character which is present in one form and latent in the other is generally transmitted with prepotent force when the two forms are crossed. For in all the Scrophulariaceæ, and especially in the genera Antirrhinum and Linaria, there is, as was shown in the last chapter, a strong latent tendency to become peloric; and there is also, as we have just seen, a still stronger tendency in all peloric plants to reacquire their normal irregular structure. So that we have two opposed latent tendencies in the same plants. Now, with the crossed Antirrhinums the tendency to produce normal or irregular flowers, like those of the common Snapdragon, prevailed in the first generation; whilst the tendency to pelorism, appearing to gain strength by the intermission of a generation, prevailed to a large extent in the second set of seedlings. How it is possible for a character to gain strength by the intermission of a generation, will be considered in the chapter on pangenesis.

      On the whole, the subject of prepotency is extremely intricate, – from its varying so much in strength, even in regard to the same character, in different animals, – from its running either equally in both sexes, or, as frequently is the case with animals, but not with plants, much stronger in the one sex than the other, – from the existence of secondary sexual characters, – from the transmission of certain characters being limited, as we shall immediately see, by sex, – from certain characters not blending together, – and, perhaps, occasionally from the effects of a previous fertilisation on the mother. It is therefore not surprising that every one hitherto has been baffled in drawing up general rules on the subject of prepotency.

Inheritance as limited by Sex

      New characters often appear in one sex, and are afterwards transmitted to the same sex, either exclusively or in a much greater degree than to the other. This subject is important, because with animals of many kinds in a state of nature, both high and low in the scale, secondary sexual characters, not in any way directly connected with the organs of reproduction, are often conspicuously present. With our domesticated animals, also, these same secondary characters are often found to differ greatly from the state in which they exist in the parent-species. And the principle of inheritance as limited by sex shows how such characters might have been first acquired and subsequently modified.

      Dr. P. Lucas, who has collected many facts on this subject, shows160 that when a peculiarity, in no manner connected with the reproductive organs, appears in either parent, it is often transmitted exclusively to the offspring of the same sex, or to a much greater number of them than of the opposite sex. Thus, in the family of Lambert, the horn-like projections on the skin were transmitted from the father to his sons and grandsons alone; so it has been with other cases of ichthyosis, with supernumerary digits, with a deficiency of digits and phalanges, and in a lesser degree with various diseases, especially with colour-blindness, and a hæmorrhagic diathesis,



<p>153</p>

'L'Héréd. Nat.,' tom. ii. book ii. ch. i.

<p>154</p>

'Bastarderzeugung,' s. 264-266. Naudin ('Nouvelles Archives du Muséum,' tom. i. p. 148) has arrived at a similar conclusion.

<p>155</p>

'Cottage Gardener,' 1856, pp. 101, 137.

<p>156</p>

See some remarks on this head with respect to sheep by Mr. Wilson, in 'Gardener's Chronicle,' 1863, p. 15.

<p>157</p>

Verlot, 'Des Variétés,' 1865, p. 66.

<p>158</p>

Moquin-Tandon, 'Tératologie,' p. 191.

<p>159</p>

'Nouvelles Archives du Muséum,' tom. i. p. 137.

<p>160</p>

'L'Héréd. Nat.,' tom. ii. pp. 137-165. See, also, Mr. Sedgwick's four memoirs, immediately to be referred to.