L'Académie des sciences et les académiciens de 1666 à 1793. Joseph Bertrand

Читать онлайн.
Название L'Académie des sciences et les académiciens de 1666 à 1793
Автор произведения Joseph Bertrand
Жанр Зарубежная классика
Серия
Издательство Зарубежная классика
Год выпуска 0
isbn



Скачать книгу

distance variable qui nous sépare de Jupiter, l’observation inégalement retardée accusera dans les intervalles des différences qui n’ont rien de réel et dont la loi est évidente. Lorsque la terre s’éloigne de Jupiter, nous fuyons pour ainsi dire devant les rayons qu’il nous envoie, le retard va en augmentant, et les intervalles apparents sont plus grands que les intervalles réels. L’effet est contraire lorsqu’en nous rapprochant de la planète, nous allons au-devant de ses rayons. Or un examen facile de la position des astres montre que, dans le premier cas, Jupiter cachant ses satellites au moment de l’immersion, l’émersion est seule visible de la terre; les immersions au contraire le sont seules dans le second cas. Si donc la propagation de la lumière n’est pas instantanée, l’intervalle entre deux immersions consécutives observées doit sembler plus court que celui de deux émersions, et la différence sera d’autant plus grande que la lumière marche moins vite. C’est par ces considérations ingénieuses que Roemer osa fixer à vingt-deux minutes le temps employé par la lumière à traverser le diamètre de l’orbite terrestre. Un paradoxe aussi hardi heurtait non-seulement l’opinion commune mais l’une des assertions les plus résolues et les plus tranchantes de Descartes; les savants devaient y résister.

      Encore que la loi de Roemer paraisse nettement dans les moyennes, lorsqu’en approfondissant la matière on veut chercher dans le détail des observations une preuve plus précise et plus certaine, l’ordre fait place à la confusion, et de continuelles anomalies en altérant les résultats prévus semblent les convaincre d’erreur. Cassini, qui entrant dans la pensée de Roemer en avait vanté d’abord la nouveauté et la force, alléguait contre elles des objections considérables. Pendant que la terre en effet s’éloigne de Jupiter, le premier satellite s’éclipse plus de cent fois; et si, comme l’affirmait Roemer, la vue de la dernière éclipse est retardée de vingt-deux minutes par rapport à celle de la première, l’accroissement moyen de l’intervalle qui sépare deux éclipses est de treize secondes environ. De si petites différences ne sont pas écrites dans les phénomènes en caractères assez visibles, et sans parler des erreurs d’observation d’autres inégalités peuvent, on le comprend, les effacer complétement et en renverser le sens.

      Roemer cependant se défendait avec vigueur et succès. On lit dans l’extrait des registres remis à Colbert en 1678: «M. Roemer a confirmé par de nouvelles observations ses sentiments touchant la vitesse de la lumière, prétendant que son mouvement ne se fait pas en un instant. Comme ce problème est un des plus beaux que l’on ait encore proposés sur ce sujet et que M. Cassini y a trouvé quelques difficultés, on l’a examiné souvent dans l’assemblée. La compagnie a trouvé que cette méthode pour trouver le temps que la lumière des astres emploie à son mouvement est la meilleure et la plus ingénieuse dont on se soit avisé jusqu’à présent.»

      Mais dans l’histoire rédigée par lui des travaux astronomiques de l’Académie, Cassini tient un tout autre langage et se prononce hardiment dans un sens opposé. On a comparé, dit-il, le temps de deux émersions prochaines du premier satellite dans une des quadratures avec le temps de deux immersions prochaines dans la quadrature opposée de cette planète, et bien que la lumière d’un satellite à la fin de sa révolution dans la première quadrature fasse moins de chemin pour venir à la terre dont Jupiter s’approche qu’à la fin de sa révolution dans la seconde, quand Jupiter s’éloigne de la terre et que cette différence monte tout au moins à trois cent mille lieues de chemin dans un temps de plus que dans l’autre, on n’a pas trouvé de différence sensible entre les deux espaces de temps. «Ce n’est pas, ajoute Cassini, que l’Académie ne se soit aperçue, dans la suite de ses observations, que le temps d’un nombre considérable d’immersions d’un même satellite est sensiblement plus court que celui d’un pareil nombre d’émersions, ce qui peut en effet s’expliquer par le mouvement successif de la lumière, mais elle ne lui a pas paru suffisante pour convaincre que le mouvement est en effet successif.» La découverte de Roemer, aujourd’hui solide et inattaquable, a été confirmée par tous les progrès de la science; les objections pouvaient cependant et devaient être faites, et Cassini, en suspendant son jugement, ne fait paraître aucun esprit de dénigrement ou de jalousie.

      La question vingt ans plus tard semblait encore douteuse, et Fontenelle en analysant un travail de Maraldi concluait avec lui ou bien peu s’en faut en faveur de la propagation instantanée. «Il paraît, dit-il, qu’il faut renoncer, quoique peut-être avec regret, à l’ingénieuse et séduisante hypothèse de la propagation successive de la lumière, ou du moins à l’unique preuve certaine que l’on crût en avoir; car une preuve manquée ne rend pas une chose impossible.»

      Une autre expédition plus célèbre encore que celle de Picard fut celle de Richer envoyé à Cayenne pour y faire, sous un ciel et dans un climat nouveaux, d’importantes observations astronomiques. Plusieurs questions lui étaient particulièrement signalées, parmi lesquelles l’observation de la planète Mars excitait au plus haut point l’impatiente curiosité des savants. L’Académie, dit Fontenelle, attendait le retour de ses missionnaires comme l’arrêt d’un juge appelé à prononcer sur les difficultés qui divisent les astronomes. Il s’agissait en effet de déterminer la distance de Mars à la terre pour en conclure le rayon encore inconnu de l’orbite terrestre.

      Les astronomes ne connaissaient que des rapports. Ils savaient très-exactement que la distance de Mars au soleil est une fois et demie celle de la terre au soleil, mais on n’avait sur la grandeur absolue de l’une d’elles que d’insignifiantes conjectures. Anaxagore, en supposant le soleil aussi grand que le Péloponèse, évaluait sa distance à la terre à mille ou douze cents lieues tout au plus. Aristarque, par des mesures ingénieuses mais fort grossières, l’avait portée à douze cents rayons terrestres; Descartes n’en supposait que sept à huit cents; Kepler au contraire avait triplé le nombre d’Aristarque. Les observations de Richer devaient sextupler celui de Kepler.

      Mars alors approchait autant que possible de la terre, et l’on espérait pouvoir mesurer l’angle formé par deux rayons visuels dirigés vers lui au même instant, l’un de Paris, l’autre de Cayenne. Rien de plus facile en théorie que la détermination d’un tel angle. Les difficultés sont toutes d’exécution, mais elles sont considérables.

      Devant la distance des étoiles, le diamètre de la terre disparaît en quelque sorte et s’évanouit; les rayons dirigés vers l’une d’elles par deux observateurs éloignés sont rigoureusement parallèles, et l’on peut par suite rapporter à une même direction et comparer par là l’un à l’autre deux rayons dirigés vers Mars de deux points éloignés du globe. Malheureusement la terre tourne et se déplace. Mars lui-même n’est pas immobile, et une seconde de retard dans une observation peut dévier de plus de quinze secondes le rayon dirigé vers lui; si l’on songe qu’un angle de vingt-cinq secondes fait tout le dénoûment du problème, on perd l’espoir d’obtenir, à deux mille lieues de distance, deux observations réellement simultanées. Il faut s’affranchir de cette condition, et la marche régulière de la planète, soumise à des lois bien connues, permet de calculer d’après la position observée celles qui la précèdent ou qui la suivent; on doit enfin dans une recherche aussi délicate prévoir toutes les causes d’erreur et en corriger les effets.

      L’événement trompa d’abord toutes les espérances. Les erreurs d’observation, en compensant fortuitement les différences de direction, assignèrent une valeur nulle à l’angle qu’on voulait mesurer; mais Cassini, en recherchant jusqu’à la source la cause possible d’un résultat aussi inacceptable, fut conduit à soupçonner un quart de minute d’erreur, en assignant à l’angle une valeur de vingt-cinq secondes que donnaient ses propres observations et qui est exacte. Cassini en effet avait résolu le problème sans employer les observations de Cayenne. Le principe de sa méthode est ingénieux; puisque la comparaison des observations n’exige pas qu’elles soient simultanées, on peut choisir pour les comparer deux observations faites à six heures de distance dans un seul et même observatoire. La terre, dans son mouvement bien connu, emporte l’observateur plus loin de sa position primitive que Paris ne l’est de Cayenne, et la différence de temps peut remplacer la distance des lieux.

      C’est l’observation du pendule qui devait immortaliser surtout le