Fractures in the Horse. Группа авторов

Читать онлайн.
Название Fractures in the Horse
Автор произведения Группа авторов
Жанр Биология
Серия
Издательство Биология
Год выпуска 0
isbn 9781119431756



Скачать книгу

musculoskeletal PET scanning in the horse are similar to those for nuclear scintigraphy with the obvious caveat that the region of interest must physically fit into the scanner. Thus, PET scanning can be used for the investigation of fractures and stress remodelling, assessment of crack and other osseous defect significance and the investigation of subchondral injuries. There is also interest in assessing its potential to identify prodromal pathology that could predispose (race‐)horses to catastrophic fractures. To date, there are few publications documenting its use in horses [152–154].

      1 1 Bushberg, J.T., Seibert, J.A., Leidholdt, E.M., and Boone, J.M. (2012). The Essential Physics of Medical Imaging, 3e. Philadelphia, USA: Lippincott, William and Wilkins.

      2 2 Prokop, M. and Schaefer‐Prokop, C.M. (1997). Digital image processing. Eur. Radiol. 7 (Suppl 3): 73–82.

      3 3 Hornof, W.J. and O'Brien, T.R. (1980). Radiographic evaluation of the palmar aspect of the equine metacarpal condyles: a new projection. Vet. Radiol. 21: 161–167.

      4 4 Pilsworth, R.C., Hopes, R., and Greet, T.R. (1988). A flexed dorso‐palmar projection of the equine fetlock in demonstrating lesions of the distal third metacarpus. Vet. Rec. 122: 332–333.

      5 5 McLear, R.C., Handmaker, H., Schmidt, W. et al. (2004). “Uberschwinger” or “rebound effect” artifact in computed radiographic imaging of metallic implants in veterinary medicine. Vet. Radiol. Ultrasound. 45: 266.

      6 6 Drost, W.T., Reese, D.J., and Hornof, W.J. (2008). Digital radiography artefacts. Vet. Radiol. Ultrasound. 49: S48–S56.

      7 7 Grandage, J. (1976). Interpretation of bone radiographs: some hazards for the unwary. Aust. Vet J. 52: 305–311.

      8 8 Frietman, S., van Proosdij, R., ter Braake, F., and de Heer, N. (2020). A detailed radiographic description of the nutrient foramen of the dorsal cortex of the proximal phalanx in horses. Equine Vet. Educ. 32: 72–77.

      9 9 Butler, J.A., Colles, C.M., Dyson, S.J. et al. (2017). Clinical Radiology of the Horse, 4e, 449–530. Chichester, UK: Wiley.

      10 10 Ramirez, O., Jorgensen, J.S., and Thrall, D.E. (1998). Imaging basilar skull fractures in the horse: a review. Vet. Radiol. Ultrasound. 39: 391–395.

      11 11 Derungs, S., Fuerst, A., Haas, C. et al. (2001). Fissure fractures of the radius and tibia in 23 horses: a retrospective study. Equine Vet. Educ. 13: 313–318.

      12 12 Mandalia, V., Fogg, A.J.B., Chari, R. et al. (2005). Bone bruising of the knee. Clin. Radiol. 60: 627–636.

      13 13 Stover, S.M. (2017). Nomenclature, classification, and documentation of catastrophic fractures and associated pre‐existing injuries in racehorses. J. Vet. Diagn. Invest. 29: 396–404.

      14 14 Roub, L.W., Gumerman, L.W., Hanley, E.N. et al. (1979). Bone stress: a radionuclide imaging perspective. Radiology 132: 431–438.

      15 15 O' Callaghan, M.W. (1991). The integration of radiography and alternative imaging methods in the diagnosis of equine orthopaedic disease. Vet. Clin. North Am. Equine Pract. 7: 339–364.

      16 16 Edelstyn, G.A., Gillespie, P.J., and Grebbell, F.S. (1967). The radiological demonstration of osseous metastases. Experimental observations. Clin. Radiol. 18: 158–162.

      17 17 Mandell, J.C., Khurana, B., and Smith, S.E. (2017). Stress fractures of the foot and ankle, part 1: biomechanics of bone and principles of imaging and treatment. Skelet. Radiol. 46: 1021–1029.

      18 18 Spitz, D.J. and Newberg, A.H. (2002). Imaging of stress fractures in the athlete. Radiol. Clin. N. Am. 40: 313–331.

      19 19 Jones, B.H., Harris, J.M., Vinh, T.N., and Rubin, C. (1989). Exercise‐induced stress fractures and stress reactions of bone: epidemiology, etiology, and classification. Exerc. Sport Sci. Rev. 17: 379–422.

      20 20 Anderson, M.W. and Greenspan, A. (1996). Stress fractures. Radiology 199: 1–12.

      21 21 Daffner, R.H. and Pavlov, H. (1992). Stress fractures: current concepts. Am. J. Roentgenol. 159: 245–252.

      22 22 Deutsch, A.L., Coel, M.N., and Mink, J.H. (1997). Imaging of stress injuries to bone. Radiography, scintigraphy, and MR imaging. Clin. Sports Med. 16: 275–290.

      23 23 Ishibashi, Y., Okamura, Y., Otsuka, H. et al. (2002). Comparison of scintigraphy and magnetic resonance imaging for stress injuries of bone. Clin. J. Sport Med. 12: 79–84.

      24 24 Matcuk, G.R., Mahanty, S.R., Skalski, M.R. et al. (2016). Emerg. Radiol. 23: 365–375.

      25 25 Savoca, C.J. (1971). Stress fractures. A classification of the earliest radiographic signs. Radiology 100: 519–524.

      26 26 Pepper, M., Akuthota, V., and McCarty, E.C. (2006). The pathophysiology of stress fractures. Clin. Sports Med. 25: 1–16.

      27 27 Rupani, H.D., Holder, L.E., Espinola, D.A., and Engin, S.I. (1985). Three‐phase radionuclide bone imaging in sports medicine. Radiology 156: 187–196.

      28 28 Zwas, S., Elkanovitch, R., and Frank, G. (1987). Interpretation and classification of bone scintigraphic findings in stress fractures. J. Nucl. Med. 28: 452–457.

      29 29 Davis, A.M. (1990). Stress lesions of bone. Curr. Imag. 2: 209–219.

      30 30 Knapp, T.P. and Garrett, W.E. (1997). Stress fractures: general concepts. Clin. Sports Med. 16: 339–356.

      31 31 Geslien, G.E., Thrall, J.H., Espinosa, J.L., and Older, R.A. (1976). Early detection of stress fractures using 99mTc‐polyphosphate. Radiology 121: 683–687.

      32 32 Seigel, B., Alazraki, N., Davis, M. et al. (1980). Skeletal system. In: Nuclear Medicine Review Syllabus (ed. P.T. Kirchner), 539–586. New York: New York Society of Nuclear Medicine.

      33 33 Ramzan, P.H.L. (2009). Transverse stress fracture of the distal diaphysis of the third metacarpus in six Thoroughbred racehorses. Equine Vet. J. 41: 602–605.

      34 34 Morgan, R. and Dyson, S. (2012). Incomplete longitudinal fractures and fatigue injury of the proximopalmar medial aspect of the third metacarpal bone in 55 horses. Equine Vet. J. 44: 64–70.

      35 35 Bargren, J.H., Tilson, D.H. Jr., and Bridgeford, O.E. (1971). Prevention of displaced fatigue fractures of the femur. J. Bone Joint Surg. 53‐A: 1115–1117.

      36 36 Stover, S.M., Hornof, W.J., Richardson, G.L., and Meagher, D.M. (1986). Bone scintigraphy as an aid in the diagnosis of occult distal tarsal bone trauma in three horses. J. Am. Vet. Med. Assoc. 188: 624–628.

      37 37 Mackey, V.S., Trout, D.R., Meagher, D.M., and Hornof, W.J. (1987). Stress fractures of the humerus, radius and tibia in horses: clinical features and radiographic and/or scintigraphic appearance. Vet. Radiol. 28: 26–31.

      38 38 O'Sullivan, C.B. and Lumsden, J.M. (2003). Stress fractures of the tibia and humerus in Thoroughbred racehorses: 99 cases (1992‐2000). J. Am. Vet. Med. Assoc. 222: 491–498.

      39 39 Davidson, E.J. and Martin, B.B. (2004). Stress fracture of the scapula in two horses. Vet. Radiol. Ultrasound. 45: 407–410.

      40 40 Specht, T.E., Poulos, P.W., Metcalf, M.R., and Robertson, I.D. (1990). Vacuum phenomenon in the metatarsophalangeal joint of a horse. J. Am. Vet. Med. Assoc. 197: 749–750.

      41 41 Taylor, D.S., Wisner, E.R., Kuesis, B.S. et al. (1993). Gas accumulation in the subarachnoid space resulting from blunt trauma to the occipital region of a horse. Vet. Radiol. Ultrasound. 34: 191–193.

      42 42 Smith, M.R.W. and Wright, I.M. (2014). Radiographic configuration and healing of 121 fractures of the proximal phalanx in 120 Thoroughbred racehorses (2007‐2011). Equine Vet. J. 46: 81–87.

      43 43 Kuemmerle, J.M., Auer, J.A., Rademacher, N. et al. (2008). Short incomplete sagittal fractures of the proximal phalanx in ten horses not used for racing. Vet. Surg. 37: 193–200.

      44 44 Sande, R. (1999). Radiography of orthopaedic trauma and fracture repair. Vet. Clin. North Am. Small Animal Pract. 29: 1247–1260.

      45 45 Rubin, J.M., Adler, R.S., Bude, R.O. et