Pathology of Genetically Engineered and Other Mutant Mice. Группа авторов

Читать онлайн.
Название Pathology of Genetically Engineered and Other Mutant Mice
Автор произведения Группа авторов
Жанр Биология
Серия
Издательство Биология
Год выпуска 0
isbn 9781119624592



Скачать книгу

Pampel, H., Vierkant, P., Scholze, F. et al. (2013). Making research data repositories visible: the re3data.org registry. PLoS One 8 (11): e78080.

      4 4 Bult, C.J., Blake, J.A., Smith, C.L. et al., Mouse Genome Database Group (2019). Mouse Genome Database (MGD) 2019. Nucleic Acids Res. 47 (D1): D801–D806.

      5 5 Smith, C.M., Hayamizu, T.F., Finger, J.H. et al. (2019). The mouse Gene Expression Database (GXD): 2019 update. Nucleic Acids Res. 47 (D1): D774–D779.

      6 6 Heffner, C.S., Herbert Pratt, C., Babiuk, R.P. et al. (2012). Supporting conditional mouse mutagenesis with a comprehensive cre characterization resource. Nat. Commun. 3: 1218.

      7 7 Lovering, R.C., Roncaglia, P., Howe, D.G. et al. (2018). Improving interpretation of cardiac phenotypes and enhancing discovery with expanded knowledge in the Gene Ontology. Circ Genom Precis Med. 11 (2): e001813.

      8 8 Hill, D.P., D'Eustachio, P., Berardini, T.Z. et al. (2016). Modeling biochemical pathways in the gene ontology. Database 2016: baw126.

      9 9 Gene Ontology, C., Blake, J.A., Dolan, M. et al. (2013). Gene Ontology annotations and resources. Nucleic Acids Res. 41 (Database issue): D530–D535.

      10 10 Thomas, P.D., Wood, V., Mungall, C.J. et al., Gene Ontology Consortium (2012). On the use of gene ontology annotations to assess functional similarity among orthologs and paralogs: a short report. PLoS Comput. Biol. 8 (2): e1002386.

      11 11 Blake, J.A. and Harris, M.A. (2008). The Gene Ontology (GO) project: structured vocabularies for molecular biology and their application to genome and expression analysis. Curr. Protoc. Bioinformatics;Chapter 7:Unit 7.2.

      12 12 Krupke, D.M., Begley, D.A., Sundberg, J.P. et al. (2017). The Mouse Tumor Biology Database: a comprehensive resource for mouse models of human cancer. Cancer Res. 77 (21): e67–e70.

      13 13 Begley, D.A., Sundberg, J.P., Krupke, D.M. et al. (2015). Finding mouse models of human lymphomas and leukemia's using the Jackson laboratory mouse tumor biology database. Exp. Mol. Pathol. 99 (3): 533–536.

      14 14 Bult, C.J., Krupke, D.M., Begley, D.A. et al. (2015). Mouse Tumor Biology (MTB): a database of mouse models for human cancer. Nucleic Acids Res. 43 (Database issue): D818–D824.

      15 15 Begley, D.A., Krupke, D.M., Neuhauser, S.B. et al. (2014). Identifying mouse models for skin cancer using the Mouse Tumor Biology Database. Exp. Dermatol. 23 (10): 761–763.

      16 16 Conte, N., Mason, J.C., Halmagyi, C. et al. (2019). PDX Finder: a portal for patient‐derived tumor xenograft model discovery. Nucleic Acids Res. 47 (D1): D1073–D1079.

      17 17 Motenko, H., Neuhauser, S.B., O'Keefe, M., and Richardson, J.E. (2015). MouseMine: a new data warehouse for MGI. Mamm. Genome 26 (7–8): 325–330.

      18 18 Smith, C.L. and Eppig, J.T. (2015). Expanding the mammalian phenotype ontology to support automated exchange of high throughput mouse phenotyping data generated by large‐scale mouse knockout screens. J. Biomed. Semantics 6: 11.

      19 19 Bello, S.M., Shimoyama, M., Mitraka, E. et al. (2018). Disease Ontology: improving and unifying disease annotations across species. Dis. Model. Mech. 11 (3): dmm032839.

      20 20 Kohler, S., Doelken, S.C., Mungall, C.J. et al. (2014). The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res. 42 (Database issue): D966–D974.

      21 21 Amberger, J.S., Bocchini, C.A., Scott, A.F., and Hamosh, A. (2019). OMIM.org: leveraging knowledge across phenotype‐gene relationships. Nucleic Acids Res. 47 (D1): D1038–D1043.

      22 22 Mungall, C.J., McMurry, J.A., Kohler, S. et al. (2017). The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Res. 45 (D1): D712–D722.

      23 23 Alliance of Genome Resources Consortium (2019). The Alliance of Genome Resources: building a modern data ecosystem for model organism databases. Genetics 213 (4): 1189–1196.

      24 24 Begley, D.A., Krupke, D.M., Neuhauser, S.B. et al. (2012). The Mouse Tumor Biology Database (MTB): a central electronic resource for locating and integrating mouse tumor pathology data. Vet. Pathol. 49 (1): 218–223.

      25 25 Begley, D.A., Krupke, D.M., Vincent, M.J. et al. (2007). Mouse Tumor Biology Database (MTB): status update and future directions. Nucleic Acids Res. 35 (Database issue): D638–D642.

      26 26 Bult, C.J., Krupke, D.M., Sundberg, J.P., and Eppig, J.T. (2000). Mouse tumor biology database (MTB): enhancements and current status. Nucleic Acids Res. 28 (1): 112–114.

      27 27 Krupke, D.M., Begley, D.A., Sundberg, J.P. et al. (2008). The Mouse Tumor Biology database. Nat. Rev. Cancer 8 (6): 459–465.

      28 28 Krupke, D.M., Naf, D., Vincent, M.J. et al. (2005). The Mouse Tumor Biology Database: integrated access to mouse cancer biology data. Exp. Lung Res. 31 (2): 259–270.

      29 29 Naf, D., Krupke, D.M., Sundberg, J.P. et al. (2002). The Mouse Tumor Biology Database: a public resource for cancer genetics and pathology of the mouse. Cancer Res. 62 (5): 1235–1240.

      30 30 Mikaelian, I., Nanney, L.B., Parman, K.S. et al. (2004). Antibodies that label paraffin‐embedded mouse tissues: a collaborative endeavor. Toxicol. Pathol. 32 (2): 181–191.

      31 31 Morse, H.C. 3rd, Anver, M.R., Fredrickson, T.N. et al. (2002). Bethesda proposals for classification of lymphoid neoplasms in mice. Blood 100 (1): 246–258.

      32 32 Kogan, S.C., Ward, J.M., Anver, M.R. et al. (2002). Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice. Blood 100 (1): 238–245.

      33 33 Sundberg, J.P., Berndt, A., Sundberg, B.A. et al. (2011). The mouse as a model for understanding chronic diseases of aging: the histopathologic basis of aging in inbred mice. Pathobiol. Aging Age Relat. Dis. 1: 7179.

      34 34 Berndt, A., Cario, C.L., Silva, K.A. et al. (2011). Identification of Fat4 and Tsc22d1 as novel candidate genes for spontaneous pulmonary adenomas. Cancer Res. 71 (17): 5779–5791.

      35 35 NCBI Resource Coordinators (2016). Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 44 (D1): D7–D19.

      36 36 NCBI Resource Coordinators (2015). Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 43 (Database issue): D6–D17.

      37 37 Blake, J.A., Eppig, J.T., Kadin, J.A. et al. (2017). Mouse Genome Database (MGD)‐2017: community knowledge resource for the laboratory mouse. Nucleic Acids Res. 45 (D1): D723–D729.

      38 38 Keane, T.M., Goodstadt, L., Danecek, P. et al. (2011). Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477 (7364): 289–294.

      39 39 Yalcin, B., Wong, K., Agam, A. et al. (2011). Sequence‐based characterization of structural variation in the mouse genome. Nature 477 (7364): 326–329.

      40 40 Klement, J.F., Matsuzaki, Y., Jiang, Q.J. et al. (2005). Targeted ablation of the Abcc6 gene results in ectopic mineralization of connective tissues. Mol. Cell. Biol. 25 (18): 8299–8310.

      41 41 Berndt, A., Li, Q., Potter, C.S. et al. (2013). A single‐nucleotide polymorphism in the Abcc6 gene associates with connective tissue mineralization in mice similar to targeted models for pseudoxanthoma elasticum. J. Invest. Dermatol. 133 (3): 833–836.

      42 42 Li, Q., Guo, H., Chou, D.W. et al. (2014). Mouse models for pseudoxanthoma elasticum: genetic and dietary modulation of the ectopic mineralization phenotypes. PLoS One 9 (2): e89268.

      43 43 Li, Q., Philip, V.M., Stearns, T.M. et al. (2019). Quantitative trait locus and integrative genomics revealed candidate modifier genes for ectopic mineralization in mouse models of pseudoxanthoma elasticum. J. Invest. Dermatol. 139 (12): 2447–2457.e7.

      44 44 Dolney, D.E., Szalai, G., and Felder, M.R. (2001). Differences in charge and kinetic properties of alcohol dehydrogenase 4 from C57BL/6 mice compared to other inbred strains are associated with a cysteine120 to arginine120 substitution. Biochem. Genet. 39 (7–8): 239–250.

      45 45 Sundberg, J.P., Taylor, D., Lorch, G. et al. (2011).