Название | Mantle Convection and Surface Expressions |
---|---|
Автор произведения | Группа авторов |
Жанр | Физика |
Серия | |
Издательство | Физика |
Год выпуска | 0 |
isbn | 9781119528593 |
288 Tanabe, Y., & Sugano, S. (1954a). On the absorption spectra of complex ions I. J. Phys. Soc. Jpn., 9, 753–766. https://doi.org/10.1143/JPSJ.9.753
289 Tanabe, Y., & Sugano, S. (1954b). On the absorption spectra of complex ions II. J. Phys. Soc. Jpn., 9, 766–779. https://doi.org/10.1143/JPSJ.9.766
290 Thomsen, L. (1972a). The fourth‐order anharmonic theory: Elasticity and stability. J. Phys. Chem. Solids, 33, 363–378. https://doi.org/10.1016/0022‐3697(72)90018‐2
291 Thomsen, L. (1972b). Elasticity of polycrystals and rocks. J. Geophys. Res., 77, 315–327. https://doi.org/10.1029/JB077i002p00315
292 Thomson, A.R., Crichton, W.A., Brodholt, J.P., Wood, I.G., Siersch, N.C., Muir, J.M.R., et al. (2019). Seismic velocities of CaSiO3 perovskite can explain LLSVPs in Earth’s lower mantle. Nature, 572, 643–647. https://doi.org/10.1038/s41586‐019‐1483‐x
293 Trampert, J., Deschamps, F., Resovsky, J., & Yuen, D. (2004). Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 306, 853–856. https://doi.org/10.1126/science.1101996
294 Tröster, A., Ehsan, S., Belbase, K., Blaha, P., Kreisel, J., & Schranz, W. (2017). Finite‐strain Landau theory applied to the high‐pressure phase transition of lead titanate. Phys. Rev. B, 95, 064111. https://doi.org/10.1103/PhysRevB.95.064111
295 Tröster, A., Schranz, W., Karsai, F., & Blaha, P. (2014). Fully consistent finite‐strain Landau theory for high‐pressure phase transitions. Phys. Rev. X, 4, 031010. https://doi.org/10.1103/PhysRevX.4.031010
296 Tröster, A., Schranz, W., & Miletich, R. (2002). How to couple Landau theory to an equation of state. Phys. Rev. Lett., 88, 055503. https://doi.org/10.1103/PhysRevLett.88.055503
297 Tsuchiya, T., Wentzcovitch, R.M., da Silva, C.R.S., & de Gironcoli, S. (2006). Spin transition in magnesiowüstite in Earth’s lower mantle. Phys. Rev. Lett., 96. https://doi.org/10.1103/PhysRevLett.96.198501
298 van der Hilst, R.D., Widiyantoro, S., & Engdahl, E.R. (1997). Evidence for deep mantle circulation from global tomography. Nature, 386, 578–584. https://doi.org/10.1038/386578a0
299 Voigt, W. (1928). Lehrbuch der Kristallphysik. Teubner, Leipzig (in German).
300 Wadhawan, V.K. (1982). Ferroelasticity and related properties of crystals. Phase Transitions, 3, 3–103. https://doi.org/10.1080/01411598208241323
301 Wang, X., Tsuchiya, T., & Hase, A. (2015). Computational support for a pyrolitic lower mantle containing ferric iron. Nat. Geosci., 8, 556–559. https://doi.org/10.1038/ngeo2458
302 Waszek, L., Schmerr, N.C., & Ballmer, M.D. (2018). Global observations of reflectors in the mid‐mantle with implications for mantle structure and dynamics. Nat. Commun., 9, 385. https://doi.org/10.1038/s41467‐017‐02709‐4
303 Watt, J.P., Davies, G.F., & O’Connell, R.J. (1976). The elastic properties of composite materials. Rev. Geophys., 14, 541–563. https://doi.org/10.1029/RG014i004p00541
304 Weidner, D.J., Sawamoto, H., Sasaki, S., & Kumazawa, M. (1984). Single‐crystal elastic properties of the spinel phase of Mg2SiO4. J. Geophys. Res. – Solid Earth, 89, 7852–7860. https://doi.org/10.1029/JB089iB09p07852
305 Wentzcovitch, R.M., Justo, J.F., Wu, Z., Silva, C.R.S. da, Yuen, D.A., & Kohlstedt, D. (2009). Anomalous compressibility of ferropericlase throughout the iron spin cross‐over. Proc. Natl. Acad. Sci. U.S.A., 106, 8447–8452. https://doi.org/10.1073/pnas.0812150106
306 Wentzcovitch, R.M., Karki, B.B., Cococcioni, M., & de Gironcoli, S. (2004). Thermoelastic properties of MgSiO3‐perovskite: Insights on the nature of the Earth’s lower mantle. Phys. Rev. Lett., 92, 018501. https://doi.org/10.1103/PhysRevLett.92.018501
307 Wentzcovitch, R.M., Martins, J.L., & Price, G.D. (1993). Ab initio molecular dynamics with variable cell shape: Application to MgSiO3. Phys. Rev. Lett., 70, 3947–3950. https://doi.org/10.1103/PhysRevLett.70.3947
308 Wentzcovitch, R.M., Ross, N.L., & Price, G.D. (1995). Ab initio study of MgSiO3 and CaSiO3 perovskites at lower‐mantle pressures. Phys. Earth Planet. Inter., 90, 101–112. https://doi.org/10.1016/0031‐9201(94)03001‐Y
309 Wentzcovitch, R.M., Tsuchiya, T., & Tsuchiya, J. (2006). MgSiO3 postperovskite at D” conditions. Proc. Natl. Acad. Sci. U.S.A., 103, 543–546. https://doi.org/10.1073/pnas.0506879103
310 Wentzcovitch, R.M., Wu, Z., & Carrier, P. (2010a). First principles quasiharmonic thermoelasticity of mantle minerals. Rev. Mineral. Geochem., 71, 99–128. https://doi.org/10.2138/rmg.2010.71.5
311 Wentzcovitch, R.M., Yu, Y.G., & Wu, Z. (2010b). Thermodynamic properties and phase relations in mantle minerals investigated by first principles quasiharmonic theory. Rev. Mineral. Geochem., 71, 59–98. https://doi.org/10.2138/rmg.2010.71.4
312 Wicks, J.K., Jackson, J.M., & Sturhahn, W. (2010). Very low sound velocities in iron‐rich (Mg,Fe)O: Implications for the core–mantle boundary region. Geophys. Res. Lett., 37, L15304. https://doi.org/10.1029/2010GL043689
313 Wicks, J.K., Jackson, J.M., Sturhahn, W., & Zhang, D. (2017). Sound velocity and density of magnesiowüstites: Implications for ultralow‐velocity zone topography. Geophys. Res. Lett., 44, 2148–2158. https://doi.org/10.1002/2016GL071225
314 Workman, R.K., & Hart, S.R. (2005). Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett., 231, 53–72. https://doi.org/10.1016/j.epsl.2004.12.005
315 Wu, Y., Qin, F., Wu, X., Huang, H., McCammon, C.A., Yoshino, T., et al. (2017). Spin transition of ferric iron in the calcium‐ferrite type aluminous phase. J. Geophys. Res. – Solid Earth, 122, 5935–5944. https://doi.org/10.1002/2017JB014095
316 Wu, Y., Wu, X., Lin, J.‐F., McCammon, C.A., Xiao, Y., Chow, P., et al. (2016). Spin transition of ferric iron in the NAL phase: Implications for the seismic heterogeneities of subducted