Название | Mantle Convection and Surface Expressions |
---|---|
Автор произведения | Группа авторов |
Жанр | Физика |
Серия | |
Издательство | Физика |
Год выпуска | 0 |
isbn | 9781119528593 |
ACKNOWLEDGMENTS
LM acknowledges support from the National Science Foundation through EAR‐1654687 and from the Capitol DOE Alliance Center (CDAC). LM would also like to thank two anonymous reviewers and editor H. Marquardt, whose comments greatly improved the manuscript.
REFERENCES
1 Allègre, C. J., & Turcotte, D. L. (1986). Implications of a two‐component marble‐cake mantle. Nature, 323(6084), 123–127. https://doi.org/10.1038/323123a0
2 Ammann, M. W., Brodholt, J. P., Wookey, J., & Dobson, D. P. (2010). First‐principles constraints on diffusion in lower‐mantle minerals and a weak D′′ layer. Nature, 465(7297), 462–465. https://doi.org/10.1038/nature09052
3 Amodeo, J., Carrez, P., & Cordier, P. (2012). Modelling the effect of pressure on the critical shear stress of MgO single crystals. Philosophical Magazine, 92(12), 1523–1541. https://doi.org/10.1080/14786435.2011.652689
4 Amodeo, J., Dancette, S., & Delannay, L. (2016). Atomistically‐informed crystal plasticity in MgO polycrystals under pressure. International Journal of Plasticity, 82(March), 177–191. https://doi.org/10.1016/j.ijplas.2016.03.004
5 Amodeo, J., Merkel, S., Tromas, C., Carrez, P., Korte‐Kerzel, S., Cordier, P., et al. (2018). Dislocations and Plastic Deformation in MgO Crystals: A Review. Crystals, 8(6), 240. https://doi.org/10.3390/cryst8060240
6 Andrault, D., Muñoz, M., Bolfan‐Casanova, N., Guignot, N., Perrillat, J. P., Aquilanti, G., & Pascarelli, S. (2010). Experimental evidence for perovskite and post‐perovskite coexistence throughout the whole D′ region. Earth and Planetary Science Letters, 293(1–2), 90–96. https://doi.org/10.1016/j.epsl.2010.02.026
7 Appel, F., & Wielke, B. (1985). Low temperature deformation of impure MgO single crystals. Materials Science and Engineering, 73, 97–103. https://doi.org/10.1016/0025‐5416(85)90299‐X
8 Arrhenius, S. (1889). Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Zeitschrift Für Physikalische Chemie, 4(1), 226–248. https://doi.org/10.1515/zpch‐1889‐0416
9 Azuma, S., Nomura, R., Uesugi, K., Nakashima, Y., Kojima, Y., Doi, S., & Kakizawa, S. (2018). Anvil design for slip‐free high pressure deformation experiments in a rotational diamond anvil cell. High Pressure Research, 38(1), 23–31. https://doi.org/10.1080/08957959.2017.1396327
10 Barreiro, J. G., Lonardelli, I., Wenk, H. R., Dresen, G., Rybacki, E., Ren, Y., & Tomé, C. N. (2007). Preferred orientation of anorthite deformed experimentally in Newtonian creep. Earth and Planetary Science Letters, 264(1–2), 188–207. https://doi.org/10.1016/j.epsl.2007.09.018
11 Boehler, R. (2000). Laser heating in the diamond cell: techniques and applications. Hyperfine Interactions, 128(1/3), 307–321. https://doi.org/10.1023/A:1012648019016
12 Boioli, F., Carrez, P., Cordier, P., Devincre, B., Gouriet, K., Hirel, P., et al. (2017). Pure climb creep mechanism drives flow in Earth’s lower mantle. Science Advances, 3(3), e1601958. https://doi.org/10.1126/sciadv.1601958
13 Bons, P. D., & den Brok, B. (2000). Crystallographic preferred orientation development by dissolution–precipitation creep. Journal of Structural Geology, 22(11–12), 1713–1722. https://doi.org/10.1016/S0191‐8141(00)00075‐4
14 Brokmeier, H. G., Böcker, W., & Bunge, H. J. (1988). Neutron Diffraction Texture Analysis in Extruded Al‐Pb Composites. Textures and Microstructures, 8, 429–441. https://doi.org/10.1155/TSM.8‐9.429
15 Brown, J. M., & Shankland, T. J. (1981). Thermodynamic parameters in the Earth as determined from seismic profiles. Geophysical Journal International, 66(3), 579–596. https://doi.org/10.1111/j.1365‐246X.1981.tb04891.x
16 Burnley, P. C., & Kaboli, S. (2019). Elastic plastic self‐consistent (EPSC) modeling of San Carlos olivine deformed in a D‐DIA apparatus. American Mineralogist, 104(2), 276–281. https://doi.org/10.2138/am‐2019‐6666
17 Burnley, P. C., & Zhang, D. (2008). Interpreting in situ x‐ray diffraction data from high pressure deformation experiments using elastic–plastic self‐consistent models: an example using quartz. Journal of Physics: Condensed Matter, 20(28), 285201. https://doi.org/10.1088/0953‐8984/20/28/285201
18 Bystricky, M., Heidelbach, F., & Mackwell, S. (2006). Large‐strain deformation and strain partitioning in polyphase rocks: Dislocation creep of olivine–magnesiowüstite aggregates. Tectonophysics, 427(1–4), 115–132. https://doi.org/10.1016/J.TECTO.2006.05.025
19 Canova, G. R., Wenk, H. R., & Molinari, A. (1992). Deformation modelling of multi‐phase polycrystals: case of a quartz‐mica aggregate. Acta Metallurgica Et Materialia, 40(7), 1519–1530. https://doi.org/10.1016/0956‐7151(92)90095‐V
20 Carrez, P., Ferré, D., & Cordier, P. (2007a). Implications for plastic flow in the deep mantle from modelling dislocations in MgSiO3 minerals. Nature, 446(7131), 68–70. https://doi.org/10.1038/nature05593
21 Carrez, P., Ferré, D., & Cordier, P. (2007b). Peierls‐Nabarro model for dislocations