Mantle Convection and Surface Expressions. Группа авторов

Читать онлайн.
Название Mantle Convection and Surface Expressions
Автор произведения Группа авторов
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119528593



Скачать книгу

Gallagher, & H. Tkalcic (2013). Transdimensional inference in the geosciences. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371, 20110,547, doi:10.1111/j.1365‐246X.1990.tb04588.x.

      83 Schuberth, B. S. A., H.‐P. Bunge, & J. Ritsema (2009). Tomographic filtering of high‐resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone? Geochemistry, Geophysics, Geosystems, 10(5), doi:10.1029/2009GC002401.

      84 Shim, S.‐H., B. Grocholski, Y. Ye, E. E. Alp, S. Xu, D. Morgan, Y. Meng, & V. B. Prakapenka (2017). Stability of ferrous‐iron‐rich bridgmanite under reducing midmantle conditions. Proceedings of the National Academy of Sciences, 114(25), 6468–6473, doi:10.1073/pnas.1614036114.

      85 Simons, F., F. Dahlen, & M. Wieczorek (2006). Spatiospectral Concentration on a Sphere. SIAM Review, 48(3), 504–536, doi:10.1137/S0036144504445765.

      86 Solomatov, V. S., & C. C. Reese (2008). Grain size variations in the Earth’s mantle and the evolution of primordial chemical heterogeneities. Journal of Geophysical Research: Solid Earth, 113(B7), doi:10.1029/2007JB005319.

      87 Steinberger, B., & R. Holme (2008). Mantle flow models with core‐mantle boundary constraints and chemical heterogeneities in the lowermost mantle. Journal of Geophysical Research: Solid Earth, 113(B5), doi:10.1029/2007JB005080.

      88 Stixrude, L., & C. Lithgow‐Bertelloni (2011). Thermodynamics of mantle minerals ‐ II. Phase equilibria. Geophysical Journal International, 184(3), 1180–1213, doi:10.1111/j.1365‐246X.2010.04890.x.

      89 Su, W.‐j., & A. M. Dziewonski (1991). Predominance of long‐wavelength heterogeneity in the mantle. Nature, 352(6331), 121–126, doi:10.1038/352121a0.

      90 Su, W.‐j., & A. M. Dziewonski (1992). On the scale of mantle heterogeneity, Physics of the Earth and Planetary Interiors. 74(1), 29–54, doi:10.1016/0031‐9201(92)90066‐5.

      91 Su, W.‐j., & A. M. Dziewonski (1997). Simultaneous inversion for 3‐D variations in shear and bulk velocity in the mantle. Physics of the Earth and Planetary Interiors, 100(1–4), 135–156.

      92 Thielmann, M., G. J. Golabek, & H. Marquardt (2020). Ferropericlase control of lower mantle rheology: Impact of phase morphology. Geochemistry, Geophysics, Geosystems, (n/a), doi:10.1029/2019GC008688.

      93 Thorne, M. S., E. J. Garnero, & S. P. Grand (2004). Geographic correlation between hot spots and deep mantle lateral shear‐wave velocity gradients, Physics of the Earth and Planetary Interiors, 146(1–2), 47–63, doi:10.1016/j.pepi.2003.09.026.

      94 Torsvik, T. H., M. A. Smethurst, K. Burke, & B. Steinberger (2006). Large igneous provinces generated from the margins of the large low‐velocity provinces in the deep mantle. Geophysical Journal International, 167(3), 1447–1460, doi:10.1111/j.1365‐246X.2006.03158.x.

      95 van der Meer, D. G., D. J. J. van Hinsbergen, & W. Spakman (2018). Atlas of the underworld: Slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity, Tectonophysics, 723, 309–448, doi:10.1016/j.tecto.2017.10.004.

      96 Wang, Y., & L. Wen (2007). Geometry and P and S velocity structure of the “African Anomaly.” J. Geophys. Res., 112(B5), B05,313, doi:10.1029/2006JB004483.

      97 Waszek, L., N. C. Schmerr, & M. D. Ballmer (2018). Global observations of reflectors in the mid‐mantle with implications for mantle structure and dynamics. Nature Communications, 9(1), 1–13, doi:10.1038/s41467‐017‐02709‐4.

      98 Wen, L., & D. L. Anderson (1995). The fate of slabs inferred from seismic tomography and 130 million years of subduction. Earth and Planetary Science Letters, 133(1), 185–198, doi:10.1016/0012‐821X(95)00064‐J.

      99 Williams, C. D., S. Mukhopadhyay, M. L. Rudolph, & B. Romanowicz (2019). Primitive Helium is Sourced from Seismically Slow Regions in the Lowermost Mantle. Geochemistry, Geophysics, Geosystems, 20(8), 4130–4145, doi:10.1029/2019GC008437.

      100 Yuan, K., & B. Romanowicz (2017). Seismic evidence for partial melting at the root of major hot spot plumes. Science, 357(6349), 393–397, doi:10.1126/science.aan0760.

      101 Zhang, N., S. Zhong, W. Leng, & Z.‐X. Li (2010). A model for the evolution of the Earth's mantle structure since the Early Paleozoic. J. Geophys. Res., 115(B6), B06,401, doi:10.1029/2009JB006896.

      102 Zhong, S., M. T. Zuber, L. Moresi, & M. Gurnis (2000). Role of temperature‐dependent viscosity and surface plates in spherical shell models of mantle convection. J. Geophys. Res., 105(B5), 11,063–11,082, doi:10.1029/2000JB900003.

      103 Zhong, S., A. McNamara, E. Tan, L. Moresi, & M. Gurnis (2008). A benchmark study on mantle convection in a 3‐D spherical shell using CitcomS. Geochemistry, Geophysics, Geosystems, 9(10), Q10,017.

      Lowell Miyagi

       Geology and Geophysics, University of Utah, Salt Lake City, UT, USA

      ABSTRACT

      Plastic deformation of rocks and mineral phases in the Earth’s interior plays a primary role in controlling large‐scale dynamic processes such as mantle convection and associated plate tectonics. Volumetrically, the lower mantle is the largest region of the Earth, and thus great effort has been made to study the deformation behavior of the mineral phases that comprise the lower mantle. Plastic deformation of these rocks and mineral phases can also lead to preferred orientation development (texture), which, in turn, can result in anisotropic physical properties. Many regions of the Earth’s interior exhibit seismic anisotropy, and thus, considerable effort has been made to understand the processes leading to texture and anisotropy development in deep Earth phases. Studying deformation of lower mantle materials is technically challenging due to the extreme pressures and temperatures experienced by materials in the deep Earth. However, recent technological advances have allowed significant progress to be made toward understanding the deformation behavior of lower mantle phases. This chapter provides an overview of deformation mechanisms in lower mantle materials and the current state of experimental deformation studies on lower mantle mineral phases and polyphase aggregates of materials relevant to the lower mantle.