Introduction To Modern Planar Transmission Lines. Anand K. Verma

Читать онлайн.
Название Introduction To Modern Planar Transmission Lines
Автор произведения Anand K. Verma
Жанр Техническая литература
Серия
Издательство Техническая литература
Год выпуска 0
isbn 9781119632474



Скачать книгу

Drude‐Lorentz model explains the dispersive property of dielectrics. In the year 1912, Debye developed the concept of dipole moment and obtained equations relating it to the dielectric constant. These models laid the foundation to study of the electric and magnetic properties of natural and engineered materials under the influence of external fields [B.4, B.6, B.7, B.12]

      1.1.3 Development of the Transmission Line Equations

      Kelvin's Cable Theory

      During the period 1840–1850, several persons conceived the idea of telegraph across the Atlantic Ocean. Finally, in the year 1850, the first under‐sea telegraphy, between Dover (Kent, England) and Calais (France), was made operational. However, no cable theory was available at that time to understand the electrical behavior of signal transmission over the undersea cable.

      In 1854, Kelvin modeled the under‐sea cable as a coaxial cable with an inner conductor of wire surrounded by an insulating dielectric layer, followed by the saline sea‐water acting as the outer conductor [J.18, B.1]. The coaxial cable was modeled by him as a distributed RC circuit with the series resistance R per unit length (p.u.l.) and shunt capacitance C p.u.l. It was the time of the fluid model of electricity. Kelvin further conceived the flow of electricity similar to the flow of heat in a conductor. Fourier analysis of 1D heat flow was in existence since 1822. Following the analogy of heat equation of Fourier, Kelvin obtained the diffusion type equation for the transmitted voltage signal over the under‐sea coaxial cable:

      Heaviside Transmission Line Equation

      The limitation of the speed of telegraph signals was not understood at that time. The RC model of the cable, leading to the diffusion equation, and use of the time‐domain pulse could not explain it. Moreover, it became obvious that the RC model couldn't be used to understand the problems related to voice transmission over telephonic channels. The telephony was coming into existence. The modern telephone system is an outcome of the efforts of several innovators. However, Graham Bell got the first patent of a telephone in the year 1874. The transmitted telephonic voice signal was distorted. Therefore, an analytical model was urgently needed to improve the quality of telephonic transmission. Heaviside in 1876 introduced the line inductance L p.u.l. and reformulated the cable theory of Kelvin using Kirchhoff circuital laws [B1, B.3]. The formulation resulted in the wave equation for both the voltage (V) and current (I) waves on the line:

      (1.1.4)equation

      In the case of line inductance L = 0, the above equation is reduced to the diffusion type cable equation (1.1.3) of Kelvin. Using the Fourier method, Heaviside solved the aforementioned time‐domain equation. Only in 1887, he could introduce the line conductance G p.u.l in his formulation to account for the leakage current in an imperfect insulating layer between two conductors. Finally, Heaviside obtained a set of coupled transmission line equations using all four line constants R, L, C, and G. Subsequently, the coupled transmission line equations were called the Telegrapher's equations. At the end, Heaviside obtained the following modified wave equation:

      To solve the above time‐domain equation, Heaviside developed his own intuitive operational method approach by defining the operator /∂t → p. The use of the operator reduced the above partial differential equation to the ordinary second‐order differential equation. Finally, he solved the equation under initial and final conditions at the ends of a finite length line. In the process, he obtained the expressions for the characteristic impedance and propagation constant in terms of line parameters. Heaviside could obtain results for the line under different conditions. For a lossless line, R = G = 0, the equation (1.1.5b) is obtained. Conceptually, the characteristic impedance provided a mechanism to explain the phenomenon of wave propagation on an infinite line. At each section of the line, it behaved like a secondary Huygens's source providing the forward‐moving wave motion. Heaviside also obtained the condition for the dispersionless transmission on a real lossy line, and suggested the inductive loading of a line to reduce the distortion in both the telegraph and telephone lines. Afterward, his intuitive operational method approach developed into the formal Laplace transform method, widely used to solve the differential equations [J.19, J.20, B.1–B.3, B.13].

      The method of Heaviside was further extended by Pupin in 1899 and 1900. Pupin introduced the harmonic excitation in the wave equation as a real part of the source V0ejpt [J.21, J.22]. This was an indication of the use of the modern phasor solution of the wave equation. Similar analytical works, and also practical inductive loading of the line was done by Campbell at Bell Laboratory. He published the results in 1903 [J.23]. In July 1893, Steinmetz introduced the concept of phasor to solve the AC networks of RLC circuits. In 1893, Kennelly also published the use of complex notation in Ohm's law for the AC circuits [J.24]. Carson in 1921 applied the method to solve Maxwell's equations for the wave propagation on closely spaced lines, and also analyzed for the mutual impedances. Carson in 1927 developed the electromagnetic theory of the Electric Circuits, and paved the way for the modeling of the wave phenomena using the circuit models [J.25, J.26].

      The above discussion shows that the Telegrapher's equations have come in existence due to the contributions of both Kelvin and Heaviside. To recognize their contributions,