Finite Element Analysis. Barna Szabó

Читать онлайн.
Название Finite Element Analysis
Автор произведения Barna Szabó
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119426462



Скачать книгу

are finite. Therefore u Subscript upper E upper X can be approximated by Taylor series about any point of the domain upper I overbar equals left-bracket 0 comma script l right-bracket. It is known that the error term of a Taylor series truncated at polynomial degree p is bounded by the left-parenthesis p plus 1 right-parenthesisth derivative of u Subscript upper E upper X:

      (1.108)max StartAbsoluteValue u Subscript upper F upper E Baseline minus u Subscript upper E upper X Baseline EndAbsoluteValue less-than-or-equal-to StartFraction script l Superscript p plus 1 Baseline Over left-parenthesis p plus 1 right-parenthesis factorial EndFraction max Underscript x element-of upper I overbar Endscripts StartAbsoluteValue StartFraction d Superscript p plus 1 Baseline u Subscript upper E upper X Baseline Over d x Superscript p plus 1 Baseline EndFraction EndAbsoluteValue dot

      In the special case when α is an integer and p Subscript min Baseline greater-than-or-equal-to alpha plus 1 then u Subscript upper F upper E Baseline equals u Subscript upper E upper X.

double-vertical-bar left-parenthesis u Subscript upper F upper E Baseline right-parenthesis Subscript upper M left-parenthesis normal upper Delta right-parenthesis Baseline double-vertical-bar Subscript upper E left-parenthesis upper I right-parenthesis Superscript 2 Baseline equals StartAbsoluteValue pi Subscript upper M left-parenthesis normal upper Delta right-parenthesis Baseline EndAbsoluteValue
. Uniform mesh refinement, p Subscript k Baseline equals p equals 2 for all elements.

upper M left-parenthesis normal upper Delta right-parenthesis N alpha equals 0.6 alpha equals 0.7 alpha equals 0.8 alpha equals 0.9
10 19 −2.17753673 −1.73038992 −1.41382648 −1.17955239
100 199 −2.25079984 −1.74673700 −1.41675042 −1.17984996
1000 1999 −2.29589857 −1.75303348 −1.41745363 −1.17989453
pi Subscript upper M left-parenthesis normal upper Delta right-parenthesis right-arrow infinity −2.37254083 −1.75716094 −1.41768637 −1.17990276
left-parenthesis e Subscript r Superscript asterisk Baseline right-parenthesis Subscript upper E Baseline equals StartRoot StartFraction pi left-parenthesis u Subscript upper F upper E Baseline right-parenthesis minus pi Subscript upper M left-parenthesis normal upper Delta right-parenthesis right-arrow infinity Baseline Over StartAbsoluteValue pi Subscript upper M left-parenthesis normal upper Delta right-parenthesis right-arrow infinity Baseline EndAbsoluteValue EndFraction EndRoot equals StartRoot StartFraction negative 1.41382648 plus 1.41768637 Over 1.41768637 EndFraction EndRoot equals 0.0522