Finite Element Analysis. Barna Szabó

Читать онлайн.
Название Finite Element Analysis
Автор произведения Barna Szabó
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119426462



Скачать книгу

alt="f element-of upper C Superscript k Baseline left-parenthesis upper I right-parenthesis"/> then u element-of upper C Superscript k plus 2 Baseline left-parenthesis upper I right-parenthesis for any k greater-than-or-equal-to 0. Similarly, if f element-of upper H Superscript k Baseline left-parenthesis upper I right-parenthesis then u element-of upper H Superscript k plus 2 Baseline left-parenthesis upper I right-parenthesis for any k greater-than-or-equal-to 0. This is known as the shift theorem. More generally, the smoothness of u depends on the smoothness of κ, c and F. For a precise statement and proof of the shift theorem we refer to [21].

      Remark 1.11 An introductory discussion on how a priori estimates are obtained under the assumption that the second derivative of the exact solution is bounded can be found in Appendix B.

      1.5.3 A posteriori estimation of error

      The goal of finite element computations is to estimate certain quantities of interest (QoIs) such as, for example, the maximum and minimum values of u or u prime on upper I equals left-parenthesis 0 comma script l right-parenthesis. Since finite element solutions are approximations to an exact solution, it is not sufficient to report the value of a QoI computed from the finite element solution. It is also necessary to provide an estimate of the relative error in the QoI, or present evidence that the relative error in the QoI is not greater than an acceptable value.

      In this section we will use the a priori estimates described in Section 1.5.2 to obtain a posteriori estimates of error in energy norm. It is possible to obtain very accurate estimates for a large class of problems which includes most problems of practical interest.

      Error estimation based on extrapolation

      (1.95)pi left-parenthesis u Subscript upper F upper E Baseline right-parenthesis minus pi left-parenthesis u Subscript upper E upper X Baseline right-parenthesis almost-equals StartFraction script upper C squared Over upper N Superscript 2 beta Baseline EndFraction

      where script upper C equals Overscript def Endscripts upper C double-vertical-bar u Subscript upper E upper X Baseline double-vertical-bar Subscript upper E left-parenthesis upper I right-parenthesis. There are three unknowns: pi left-parenthesis u Subscript upper E upper X Baseline right-parenthesis, script upper C and β. Assume that we have a sequence of solutions corresponding to the hierarchic sequence of finite element spaces upper S Subscript i minus 2 Baseline subset-of upper S Subscript i minus 1 Baseline subset-of upper S Subscript i. Let us denote the corresponding computed potential energy values by pi Subscript i minus 2, pi Subscript i minus 1, πi and the degrees of freedom by upper N Subscript i minus 2, upper N Subscript i minus 1, Ni. We will denote the estimate for pi left-parenthesis u Subscript upper E upper X Baseline right-parenthesis by π∞. With this notation we have:

      and, repeating with i minus 1 substituted for i, it is possible to eliminate 2 beta to obtain:

      where

upper Q equals log StartFraction upper N Subscript i minus 1 Baseline Over upper N Subscript i Baseline EndFraction left-parenthesis log StartFraction upper N Subscript i minus 2 Baseline Over upper N Subscript i minus 1 Baseline EndFraction right-parenthesis Superscript negative 1 dot