Finite Element Analysis. Barna Szabó

Читать онлайн.
Название Finite Element Analysis
Автор произведения Barna Szabó
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119426462



Скачать книгу

any perturbation of u by v element-of upper E Superscript 0 Baseline left-parenthesis upper I right-parenthesis will increase pi left-parenthesis u right-parenthesis. Therefore pi left-parenthesis u plus epsilon v right-parenthesis is minimum at epsilon equals 0 and hence

      (1.39)period vertical-bar times times times d pi left-parenthesis right-parenthesis plus plus u times times epsilon v times times d epsilon Subscript epsilon equals 0 Baseline equals 0 period

      Therefore we have

      where the last two terms are zero because v element-of upper E Superscript 0 Baseline left-parenthesis upper I right-parenthesis. Integrating the first term by parts,

integral Subscript 0 Superscript script l Baseline kappa u prime v Superscript prime Baseline d x equals ModifyingBelow kappa u prime left-parenthesis script l right-parenthesis v left-parenthesis script l right-parenthesis minus kappa u prime left-parenthesis 0 right-parenthesis v left-parenthesis 0 right-parenthesis With presentation form for vertical right-brace Underscript 0 Endscripts minus integral Subscript 0 Superscript script l Baseline left-parenthesis kappa u prime right-parenthesis prime v d x

      (1.41)integral Subscript 0 Superscript script l Baseline left-parenthesis minus left-parenthesis kappa u Superscript prime Baseline right-parenthesis Superscript prime Baseline plus c u minus f right-parenthesis v d x equals 0 period

      Since this holds for all v element-of upper E Superscript 0 Baseline left-parenthesis upper I right-parenthesis, the bracketed expression must be zero. In other words, the solution of the differential equation

      (1.42)minus left-parenthesis kappa u Superscript prime Baseline right-parenthesis Superscript prime Baseline plus c u equals f comma left-parenthesis kappa u Superscript prime Baseline right-parenthesis Subscript x equals 0 Baseline equals k 0 left-parenthesis u left-parenthesis 0 right-parenthesis minus delta 0 right-parenthesis comma u left-parenthesis script l right-parenthesis equals modifying above u with caret Subscript script l Baseline

      Remark 1.3 Whereas the strain energy is always positive, the potential energy may be positive, negative or zero.

      The trial and test spaces defined in the preceding section are infinite‐dimensional, that is, they span infinitely many linearly independent functions. To find an approximate solution, we construct finite‐dimensional subspaces denoted, respectively, by upper S subset-of upper X, upper V subset-of upper Y and seek the function u element-of upper S that satisfies upper B left-parenthesis u comma v right-parenthesis equals upper F left-parenthesis v right-parenthesis for all v element-of upper V. Let us return to the introductory example described in Section 1.1 and define

u equals u Subscript n Baseline equals sigma-summation Underscript j equals 1 Overscript n Endscripts a Subscript j Baseline phi Subscript j Baseline comma v equals v Subscript n Baseline equals sigma-summation Underscript i equals 1 Overscript n Endscripts b Subscript i Baseline phi Subscript i Baseline

      Similarly,

      (1.44)upper F left-parenthesis v right-parenthesis identical-to integral Subscript 0 Superscript script l Baseline f v d x equals sigma-summation Underscript i equals 1 Overscript n Endscripts b Subscript i Baseline r Subscript i Baseline equals StartSet b EndSet Superscript upper T Baseline StartSet r EndSet

      where ri is defined in eq. (1.12). Therefore we can write upper B left-parenthesis 
            </div>
      	</div>
  	</div>
  	<hr>
  	<div class=