Finite Element Analysis. Barna Szabó

Читать онлайн.
Название Finite Element Analysis
Автор произведения Barna Szabó
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119426462



Скачать книгу

equals x plus b"/> in the space upper E left-parenthesis upper I right-parenthesis as n right-arrow infinity. For the definition of convergence refer to Section A.2 in the appendix.

      This exercise illustrates that restriction imposed on u prime (or higher derivatives of u) at the boundaries will not impose a restriction on upper E left-parenthesis upper I right-parenthesis. Therefore natural boundary conditions cannot be enforced by restriction. Whereas all functions in upper E left-parenthesis upper I right-parenthesis are continuous and bounded, the derivatives do not have to be continuous or bounded.

Geometric representation of exercise 1.3: The function un(x).
.

      (1.35)integral Subscript 0 Superscript script l Baseline f v d x less-than infinity for all v element-of upper E left-parenthesis upper I right-parenthesis period

      1.2.2 The principle of minimum potential energy

      (1.36)pi left-parenthesis u right-parenthesis equals Overscript def Endscripts one half upper B left-parenthesis u comma u right-parenthesis minus upper F left-parenthesis u right-parenthesis

      on the space ModifyingAbove upper E With tilde left-parenthesis upper I right-parenthesis.

      Proof: For any v element-of upper E Superscript 0 Baseline left-parenthesis upper I right-parenthesis, double-vertical-bar v double-vertical-bar Subscript upper E Baseline not-equals 0 we have:

      (1.37)StartLayout 1st Row 1st Column pi left-parenthesis u plus v right-parenthesis equals 2nd Column one half upper B left-parenthesis u plus v comma u plus v right-parenthesis minus upper F left-parenthesis u plus v right-parenthesis 2nd Row 1st Column equals 2nd Column one half upper B left-parenthesis u comma u right-parenthesis plus upper B left-parenthesis u comma v right-parenthesis plus one half upper B left-parenthesis v comma v right-parenthesis minus upper F left-parenthesis u right-parenthesis minus upper F left-parenthesis v right-parenthesis 3rd Row 1st Column equals 2nd Column pi left-parenthesis u right-parenthesis plus ModifyingBelow upper B left-parenthesis u comma v right-parenthesis minus upper F left-parenthesis v right-parenthesis With presentation form for vertical right-brace Underscript 0 Endscripts plus one half upper B left-parenthesis v comma v right-parenthesis EndLayout

      where upper B left-parenthesis v comma v right-parenthesis greater-than 0 unless double-vertical-bar v double-vertical-bar Subscript upper E left-parenthesis upper I right-parenthesis Baseline equals 0. Therefore any admissible nonzero perturbation of u will increase pi left-parenthesis u right-parenthesis.

      This important theorem, called the theorem or principle of minimum potential energy, will be used in Chapter 7 as our starting point in the formulation of mathematical models for beams, plates and shells.

      Given the potential energy and the space of admissible functions, it is possible to determine the strong form. This is illustrated by the following example.

      with ModifyingAbove upper E With tilde left-parenthesis upper I right-parenthesis equals left-brace u vertical-bar u element-of upper E left-parenthesis upper I right-parenthesis comma u left-parenthesis script l right-parenthesis equals modifying above u with caret Subscript script l Baseline right-brace.

      Since u minimizes pi left-parenthesis u right-parenthesis,