101 факт об искусственном интеллекте. Как подготовиться к жизни в новой реальности. Лассе Рухиайнен

Читать онлайн.



Скачать книгу

существуют у нас сейчас, будут иметь даже большее значение спустя десять лет, поскольку появится доступ к еще большему объему данных.

      Один из примеров данной концепции можно найти в наблюдении за разработкой самоуправляемых автомобилей и связанных друг с другом «умных» городов. Основным компонентом, делающим создание этих вещей возможным, является объем данных, которые можно собрать и проанализировать для увеличения производительности систем искусственного интеллекта.

      Анализ данных обычно опирается на два вида информации: структурированные и неструктурированные данные. Чтобы действительно понять системы ИИ, важно знать ключевые различия между двумя типами данных.

      Обычно структурированные данные используются гораздо чаще неструктурированных. Структурированные данные включают в себя простые данные, такие как числовые значения, даты, валюты или адреса. Неструктурированные данные включают в себя более сложные для анализа типы данных: текст, изображения и видео. Однако развитие инструментов искусственного интеллекта сделало возможным анализ более обширного спектра неструктурированных данных, которые затем можно использовать для создания рекомендаций и прогнозов.

      Мощная аналитика даст нам возможность в будущем применять инструменты искусственного интеллекта для всего общества в целом.

      Рис. 1.6. Структурированные и неструктурированные данные

      В «Меррилл Линч» посчитали, что 80–90 % всех бизнес-данных в мире не структурированы, это означает, что анализ именно такого типа данных очень ценен[14]. Результаты анализа неструктурированных данных могут привести к возникновению ряда преимуществ в нашем современном обществе, включая, помимо прочего, лучшие возможности для здравоохранения, более безопасные схемы дорожного движения, а также облегчение доступа к образованию.

Использование данных в бизнесе и общественной деятельности

      «Большие данные» также помогают крупным компаниям улучшать свою внешнюю и внутреннюю деятельность. Ли Кайфу, венчурный капиталист и директор компании Sinovation Ventures, описывает причины того, почему данные важны для технологических компаний, в пяти шагах, которые компании используют для улучшения своих решений в области искусственного интеллекта:

      Получение большего количества данных: поисковый алгоритм Google содержит в себе огромное количество данных. Кроме того, Facebook не стала бы настолько мощной социальной сетью без доступа к данным о человеческом общении. Основная идея здесь состоит в том, что технологические компании могут создавать услуги, которые были бы настолько мощными и полезными, чтобы люди хотели давать сервису пользоваться своими данными.

      Лучший продукт с обученным искусственным интеллектом: в случае Google и Facebook ваш пользовательский опыт учитывает ваши индивидуальные предпочтения, чтобы быть максимально полезным вам. Это становится возможным благодаря наличию инструментов на



<p>14</p>

Wikipedia entry on Unstructured data, November 10, 2017, https:// en.wikipedia.org/wiki/Unstructured_data