Quantenmechanische Grundlagen der Molekülspektroskopie. Max Diem

Читать онлайн.
Название Quantenmechanische Grundlagen der Molekülspektroskopie
Автор произведения Max Diem
Жанр Химия
Серия
Издательство Химия
Год выпуска 0
isbn 9783527829590



Скачать книгу

ist (h = 6,626 · 10−34 J s). Dieser Zähler impliziert, dass Licht als „Quanten“ oder Lichtteilchen (Photonen) mit der Energie E existiert, wobei

      Dies war ein revolutionärer Gedanke, da die Welleneigenschaften des Lichts seit mehr als zwei Jahrhunderte zuvor bekannt und im späten 19. Jahrhundert durch Maxwell’s Gleichungen als Funktionen der elektrischen und magnetischen Felder beschrieben waren. Hier ergab sich zum ersten Mal die Erkenntnis, dass je nach Fragestellung zwei unterschiedliche Beschreibungen des Lichts in Bezug auf Wellen und Partikel angebracht waren. Ein ähnlicher ,,Teilchen-Wellen-Dualismus“ wurde später auch für Materie postuliert und bestätigt. So ist die Arbeit von Planck im frühen 20. Jahrhundert wirklich die Geburtsstunde der Ideen, die zur Formulierung der Quantenmechanik führten.

      Im Übrigen ist die Form des Ausdrucks 1/(ehv/(kT)) oder e−hv/(kT) in der klassischen physikalischen Chemie nicht unbekannt. Er vergleicht die Energie eines Ereignisses, beispielsweise eines Moleküls, das die Flüssigkeit für die Gasphase verlässt, mit dem Energieinhalt der Umgebung. Zum Beispiel hängt der Dampfdruck einer reinen Flüssigkeit von einem Faktor e−ΔHvap/(RT) ab, wobei ΔHvap die Verdampfungsenthalpie der Flüssigkeit ist und RT = NkT ist Energie bei der Temperatur T, R ist die Gaskonstante und N ist die Avogadro-Zahl. Ebenso ist die Abhängigkeit der Reaktionsgeschwindigkeitskonstante und der Gleichgewichtskonstante von der Temperatur durch äquivalente Ausdrücke gegeben, die die Aktivierungsenergie bzw. die Reaktionsenthalpie im Zähler des Exponenten enthalten. In (1.6) wird die Photonenenergie durch den Energieinhalt des emittierenden Materials dividiert und liefert eine Wahrscheinlichkeit für das Auftreten dieses Ereignisses.

      (1.8)

      Die Bestrahlungsstärke wird in Einheiten von W/(m2 s sr) oder Photonen/(m2 s sr) ausgedrückt. Die Implikation des oben erwähnten Welle-Teilchen-Dualismus wird im nächsten Abschnitt diskutiert.

      Im Jahr 1905 berichtete Einstein über experimentelle Ergebnisse, die die Energiequantelung von Licht weiter demonstrierten. In dem photoelektrischen Experiment beleuchtete Licht variabler Farbe (Frequenz) eine in einer evakuierten Röhre enthaltene Photokathode. Eine Anode in derselben Röhre war extern mit der Kathode über einen Strommesser und einer Batterie verbunden. Da die Kathode und die Anode durch ein Vakuum getrennt waren, wurde kein Strom beobachtet, es sei denn, wenn Licht mit einer Frequenz über einer Schwellenfrequenz die Photokathode beleuchtete. Einstein folgerte, dass Lichtteilchen oder Photonen mit einer Frequenz oberhalb dieses Schwellenwerts ausreichende kinetische Energie besitzen, um Elektronen aus den Metallatomen der Photokathode herauszuschlagen. Diese ,,Photo-elektronen“ verlassen die Metalloberfläche mit einer kinetischen Energie Ekin:

      Die Welleneigenschaften von Photonen werden durch Beugungsexperimente manifestiert und durch die Maxwell-Gleichung zusammengefasst. Wie bei jeder Wellenausbreitung ist die Lichtgeschwindigkeit c durch die Gleichung

      definiert, wobei λ die Wellenlänge (ausgedrückt in m) und ν die Frequenz (ausgedrückt in Hz = s−1) der Welle ist. c hat einen Wert von c = 2,998 · 108 m/s.

      Die Größe

wird als die Wellenzahl der Strahlung (in Einheiten von m−1) bezeichnet, die angibt, wie viele Wellenzyklen pro Längeneinheit auftreten:

      Die (kinetische) Energie eines Photons ist durch

      (1.13)

      gegeben, wobei

die Winkelfrequenz, durch ω = 2πν definiert sind.

      Aus der klassischen Definition des Impulses

      folgt, dass die Photonenmasse durch

      gegeben ist. Dabei soll man beachten, dass sich Photonen nur mit Lichtgeschwindigkeit bewegen können, und dass die Photonenmasse nur bei der Lichtgeschwindigkeit c definiert ist. Daher hat ein Photon die Ruhemasse m0 gleich null.

      Materieteilchen haben dagegen eine von null verschiedene Ruhemasse, die üblicherweise als ihre Masse bezeichnet wird. Diese Masse ist jedoch eine Funktion der Geschwindigkeit