Дидактика цифровой среды. Т. Н. Носкова

Читать онлайн.
Название Дидактика цифровой среды
Автор произведения Т. Н. Носкова
Жанр Прочая образовательная литература
Серия
Издательство Прочая образовательная литература
Год выпуска 2020
isbn



Скачать книгу

знаний на основе их неполных описаний, создаются методы достоверного и правдоподобного вывода на основе имеющихся знаний, предлагаются модели мышления, опирающиеся на знания и имитирующие особенности человеческого мышления [Маркарян, Хараберюш, 2018].

      Во-вторых, ИС интерпретации. Это направление включает разработку методов представления информации о зрительных образах в базе знаний, создание методов перехода от зрительных сцен к их текстовому описанию и методов обратного перехода, создание средств, порождающих зрительные сцены на основе внутренних представлений в ИС [Маркарян, Хараберюш, 2018].

      В-третьих, ИС распознавания электронных текстов. Это направление связано с работой человека по автоматизированному переводу научных текстов с иноязычных источников информации. Очевидно, что грамотный перевод текста с сохранением авторского слога и специальной терминологии это творческая, кропотливая и достаточно трудоемкая работа в плане редактирования. Автоматизированный перевод (machine-assisted, computer-assisted, computer-aided translation или CAT) сопровождает и облегчает данный процесс за счет охвата широкого диапазона инструментальных средств, от довольно простых до весьма сложных: например, программы проверки орфографии, менеджеры терминологии, одноязычные или двуязычные словари на CD-ROM, средства полнотекстового поиска, составления списков ассоциированных слов (выражений) на различных языках, программы согласования, предназначенные для обработки законченных переводов.

      В-четвертых, ИС извлечения знаний из ресурсов открытой среды. Алгоритмы text mining (ответвление data mining) широко используются в направлениях извлечения знаний из слабоструктурированной текстовой информации: автоматизации и оценки новостных статей, продукции, идентификации персоналий, реферирования и аннотирования и т. д. Цель проводимых исследований – повышение эффективности применения технологий в области анализа (распознавания, классификации, поиска) научно-образовательной текстовой информации, за счет выбора и/или разработки программ и алгоритмов извлечения данных из слабоструктурированной текстовой информации и получение более высокой точности и качества при обработке отдельных информационных кластеров. За последние десятилетия многие ведущие производители программного обеспечения развили свои решения в области text mining, перейдя от уровня узконаправленных функциональных программ (классификации, реферирования, статистического и лингвистического анализа и др.) до уровня больших аналитических информационных систем с встроенными модулями (библиотеками) машинного обучения и интеллектуального анализа данных. Как правило – это масштабируемые системы, функционирующие в архитектуре клиент-сервер, с развитым графическим интерфейсом, в которых интегрированы различные методы и алгоритмы анализа текстовых данных, инструменты визуализации и манипулирования с данными, их форматами представления.

      В-пятых, ИС анализа и обработки больших массивов данных (big data). Интеллектуальные