Space Physics and Aeronomy, Solar Physics and Solar Wind. Группа авторов

Читать онлайн.
Название Space Physics and Aeronomy, Solar Physics and Solar Wind
Автор произведения Группа авторов
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119815471



Скачать книгу

M., Owens, M., & Rouillard, A. P. (2009b, November). Excess open solar magnetic flux from satellite data: 2. A survey of kinematic effects. Journal of Geophysical Research: Space Physics, 114 (A11), A11104. doi: 10.1029/2009JA014450.

      151 Lopez, R.E., Freeman, J.W., and Roelof, E.C. (1986, July). The relationship between proton temperature and momentum flux density in the solar wind. Geophysical Research Letters 13: 640–643. https://doi.org/10.1029/GL013i007p00640.

      152 Maksimovic, M., Gary, S.P., and Skoug, R.M. (2000, August). Solar wind electron suprathermal strength and temperature gradients: Ulysses observations. Journal of Geophysical Research: Space Physics 105: 18337–18350. https://doi.org/10.1029/2000JA900039.

      153 Maksimovic, M., Pierrard, V., and Riley, P. (1997). Ulysses electron distributions fitted with Kappa functions. Geophysical Research Letters 24: 1151–1154. https://doi.org/10.1029/97GL00992.

      154 Manchester, W.B., Kozyra, J.U., Lepri, S.T., and Lavraud, B. (2014, July). Simulation of magnetic cloud erosion during propagation. Journal of Geophysical Research: Space Physics 119 (7): 5449–5464. https://doi.org/10.1002/2014JA019882.

      155 Manchester, W.B., van der Holst, B., and Lavraud, B. (2014, March). Flux rope evolution in interplanetary coronal mass ejections: The 13 May 2005 event. Plasma Physics and Controlled Fusion 56 (6): 064006. https://doi.org/10.1088/0741‐3335/56/6/064006.

      156 Marocchi, D., Antonucci, E., and Giordano, S. (2001, February). Oxygen abundance in coronal streamers during solar minimum. Annales Geophysicae 19: 135–145. https://doi.org/10.5194/angeo‐19‐135‐2001.

      157 Marsch, E. (2012, November). Helios: Evolution of distribution functions 0.3‐1 AU. Space Science Reviews 172: 23–39. https://doi.org/10.1007/s11214‐010‐9734‐z.

      158 Marsch, E., Schwenn, R., Rosenbauer, H. et al. (1982, January). Solar wind protons – Three‐dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU. Journal of Geophysical Research: Space Physics 87: 52–72. https://doi.org/10.1029/JA087iA01p00052.

      159 Marsch, E. and Tu, C.‐Y. (1993, December). Modeling results on spatial transport and spectral transfer of solar wind Alfvenic turbulence. Journal of Geophysical Research: Space Physics 98: 21. https://doi.org/10.1029/93JA02365.

      160 Matteini, L., Alexandrova, O., Chen, C.H.K., and Lacombe, C. (2017, April). Electric and magnetic spectra from MHD to electron scales in the magnetosheath. Monthly Notices of the Royal Astronomical Society 466: 945–951. https://doi.org/10.1093/mnras/stw3163.

      161 Matteini, L., Horbury, T.S., Neugebauer, M., and Goldstein, B.E. (2014). Dependence of solar wind speed on the local magnetic field orientation: Role of Alfvenic fluctuations. Geophysical Research Letters 41: 259–265. https://doi.org/10.1002/2013GL058482.

      162 Matteini, L., Horbury, T.S., Pantellini, F. et al. (2015, March). Ion kinetic energy conservation and magnetic field strength constancy in multi‐fluid solar wind Alfvénic turbulence. The Astrophysical Journal 802: 11. https://doi.org/10.1088/0004‐637X/802/1/11.

      163 Matteini, L., Stansby, D., Horbury, T.S., and Chen, C.H.K. (2018). On the 1/f spectrum in the solar wind and its connection with magnetic compressibility. The Astrophysical Journal Letters 869: L32.

      164 Matteini, L., Hellinger, P., Landi, S. et al. (2012, November). Ion Kinetics in the solar wind: Coupling global expansion to local microphysics, Space Science Review 172 (1‐4): 373‐396. https://doi.org/10.1007/s11214‐011‐9774‐z.

      165 Matthaeus, W. H., & Goldstein, M. L. (1986, July). Low‐frequency 1/f noise in the interplanetary magnetic field. Physical Review Letters, 57, 495–498. doi: 10 .1103/PhysRevLett.57.495.

      166 Mazur, J.E., Mason, G.M., Dwyer, J.R. et al. (2000, March). Interplanetary magnetic field line mixing deduced from impulsive solar flare particles. The Astrophysical Journal Letters 532: L79–L82. https://doi.org/10.1086/312561.

      167 McComas, D.J., Bame, S.J., Barraclough, B.L. et al. (1998). Ulysses’ return to the slow solar wind. Geophysical Research Letters 25: 1–4. https://doi.org/10.1029/97GL03444.

      168 McComas, D.J., Ebert, R.W., Elliott, H.A. et al. (2008, September). Weaker solar wind from the polar coronal holes and the whole Sun. Geophysical Research Letters 35: L18103. https://doi.org/10.1029/2008GL034896.

      169 McComas, D.J., Gosling, J.T., Winterhalter, D., and Smith, E.J. (1988, April). Interplanetary magnetic field draping about fast coronal mass ejecta in the outer heliosphere. Journal of Geophysical Research: Space Physics 93 (A4): 2519–2526. https://doi.org/10.1029/JA093iA04p02519.

      170 McComas, D.J., Hoogeveen, G.W., Gosling, J.T. et al. (1996, December). ULYSSES observations of pressure‐balance structures in the polar solar wind. Astronomy and Astrophysics 316: 368–373.

      171 Moldwin, M.B., Ford, S., Lepping, R. et al. (2000, January). Small‐scale magnetic flux ropes in the solar wind. 27: 57–60. https://doi.org/10.1029/1999GL010724.

      172 Moldwin, M.B., Phillips, J.L., Gosling, J.T. et al. (1995, October). Ulysses observation of a noncoronal mass ejection flux rope: Evidence of interplanetary magnetic reconnection. Journal of Geophysical Research: Space Physics 100: 19903–19910. https://doi.org/10.1029/95JA01123.

      173 Morton, R. J., Tomczyk, S., & Pinto, R. (2015, July). Investigating Alfvenic wave propagation in coronal open‐field regions. Nature Communications, 6. Retrieved 2015‐07‐27, from http://www.nature.com/ncomms/2015/150727/ncomms8813/full/ncomms8813.html doi: https://doi.org/10.1038/ncomms8813.

      174 Morton, R. J., Tomczyk, S., & Pinto, R. F. (2016, September). A global view of velocity fluctuations in the corona below 1.3 R with CoMP. The Astrophysical Journal, 828, 89. Retrieved 2016‐09‐12, from http://adsabs.harvard.edu/abs/2016ApJ…828…89M doi: https://doi.org/10.3847/0004‐637X/828/2/89.

      175 Möstl, C., Miklenic, C., Farrugia, C. J., Temmer, M., Veronig, A., Galvin, A. B., et al. (2008, October). Two‐spacecraft reconstruction of a magnetic cloud and comparison to its solar source. Annales Geophysicae, 26(10), 3139–3152. doi: https://doi.org/10.5194/angeo‐26‐3139‐2008.

      176 Neugebauer, M. (2012, May). Evidence for polar X‐ray jets as sources of microstream peaks in the solar wind. The Astrophysical Journal 750: 50. https://doi.org/10.1088/0004‐637X/750/1/50.

      177 Neugebauer, M., Clay, D.R., Goldstein, B.E. et al. (1984, July). A reexamination of rotational and tangential discontinuities in the solar wind. Journal of Geophysical Research: