Название | Space Physics and Aeronomy, Solar Physics and Solar Wind |
---|---|
Автор произведения | Группа авторов |
Жанр | Физика |
Серия | |
Издательство | Физика |
Год выпуска | 0 |
isbn | 9781119815471 |
123 Kepko, L., Viall, N.M., Antiochos, S.K. et al. (2016, May). Implications of L1 observations for slow solar wind formation by solar reconnection. Geophysical Research Letters 43: 4089–4097. https://doi.org/10.1002/2016GL068607.
124 Kilpua, E.K.J., Luhmann, J.G., Gosling, J. et al. (2009, May). Small solar wind transients and their connection to the large‐scale coronal structure. Solar Physics 256: 327–344. https://doi.org/10.1007/s11207‐009‐9366‐1.
125 Kiyani, K.H., Chapman, S.C., Sahraoui, F. et al. (2013, January). Enhanced magnetic compressibility and isotropic scale invariance at sub‐ion Larmor scales in solar wind turbulence. The Astrophysical Journal 763: 10. https://doi.org/10.1088/0004‐637X/763/1/10.
126 Kiyani, K. H., Osman, K. T., & Chapman, S. C. (2015). Dissipation and heating in solar wind turbulence: from the macro to the micro and back again. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2041), 20140155. doi: https://doi.org/10.1098/rsta.2014.01550.
127 Ko, Y.‐K., Muglach, K., Wang, Y.‐M., Young, P. R., & Lepri, S. T. (2014). Temporal evolution of solar wind ion composition and their source coronal holes during the declining phase of cycle 23. I. Low‐latitude extension of polar coronal holes. The Astrophysical Journal, 787(2), 121.
128 Kohl, J.L., Esser, R., Gardner, L.D. et al. (1995, December). The ultraviolet coronagraph spectrometer for the solar and heliospheric observatory. Solar Physics 162: 313–356. https://doi.org/10.1007/BF00733433.
129 Kohl, J.L., Noci, G., Antonucci, E. et al. (1998, July). UVCS/SOHO empirical determinations of anisotropic velocity distributions in the solar corona. The Astrophysical Journal 501: L127–L131. https://doi.org/10.1086/311434.
130 Kohl, J.L., Noci, G., Antonucci, E. et al. (1997, October). First results from the SOHO ultraviolet coronagraph spectrometer. Solar Physics 175: 613–644. https://doi.org/10.1023/A:1004903206467.
131 Lacombe, C., Alexandrova, O., and Matteini, L. (2017, October). Anisotropies of the magnetic field fluctuations at kinetic scales in the solar wind: cluster observations. The Astrophysical Journal 848: 45. https://doi.org/10.3847/1538‐4357/aa8c06.
132 Lacombe, C., Alexandrova, O., Matteini, L. et al. (2014, November). Whistler mode waves and the electron heat flux in the solar wind: Cluster observations. The Astrophysical Journal 796: 5. https://doi.org/10.1088/0004‐637X/796/1/5.
133 Laming, J.M. (2009, April). Non‐Wkb models of the first ionization potential effect: Implications for solar coronal heating and the coronal helium and neon abundances. The Astrophysical Journal 695: 954–969. https://doi.org/10.1088/0004‐637X/695/2/954.
134 Laming, J.M. (2015, September). The FIP and inverse FIP effects in solar and stellar coronae. Living Reviews in Solar Physics 12: 2. https://doi.org/10.1007/lrsp‐2015 ‐2.
135 Lavraud, B., Gosling, J.T., Rouillard, A.P. et al. (2009, May). Observation of a complex solar wind reconnection exhaust from spacecraft separated by over 1800 R E. Solar Physics 256: 379–392. https://doi.org/10.1007/s11207‐009‐9341‐x.
136 Lavraud, B., Ruffenach, A., Rouillard, A.P. et al. (2014, January). Geo‐effectiveness and radial dependence of magnetic cloud erosion by magnetic reconnection. Journal of Geophysical Research: Space Physics 119: 26–35. https://doi.org/10.1002/2013JA019154.
137 Lazar, M., Yoon, P.H., López, R.A., and Moya, P.S. (2018, January). Electromagnetic electron cyclotron instability in the solar wind. Journal of Geophysical Research: Space Physics 123: 6–19. https://doi.org/10.1002/2017JA024759.
138 Leamon, R.J., Smith, C.W., Ness, N.F. et al. (1998, March). Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. Journal of Geophysical Research Atmospheres 103: 4775. https://doi.org/10.1029/97JA03394.
139 Lee, M.A. (2000, May). An analytical theory of the morphology, flows, and shock compressions at corotating interaction regions in the solar wind. Journal of Geophysical Research 105: 10491–10500. https://doi.org/10.1029/1999JA000327.
140 Leubner, M.P. and Vörös, Z. (2005, January). A nonextensive entropy approach to solar wind intermittency. The Astrophysical Journal 618: 547–555. https://doi.org/10.1086/425893.
141 Lin, R.P. (1974, June). Non‐relativistic solar electrons. Space Science Reviews 16: 189–256. https://doi.org/10.1007/ BF00240886.
142 Lin, R.P. (1998, July). WIND observations of suprathermal electrons in the interplanetary medium. Space Science Reviews 86: 61–78. https://doi.org/10.1023/A:1005048428480.
143 Linker, J.A., Lionello, R., Mikić, Z. et al. (2011, April). The evolution of open magnetic flux driven by photospheric dynamics. The Astrophysical Journal 731: 110. https://doi.org/10.1088/0004‐637X/731/2/110.
144 Lion, S., Alexandrova, O., and Zaslavsky, A. (2016, June). Coherent events and spectral shape at ion kinetic scales in the fast solar wind turbulence. The Astrophysical Journal 824: 47. https://doi.org/10.3847/0004‐637X/824/1/47.
145 Lionello, R., Riley, P., Linker, J.A., and Mikić, Z. (2005, May). The effects of differential rotation on the magnetic structure of the solar corona: Magnetohydrodynamic simulations. The Astrophysical Journal 625: 463–473. https://doi.org/10.1086/429268.
146 Lionello, R., Velli, M., Downs, C. et al. (2014, April). Validating a Time‐dependent Turbulence‐driven Model of the Solar Wind. The Astrophysical Journal 784: 120. https://doi.org/10.1088/0004‐637X/784/2/120.
147 Liou, K., Takahashi, K., Newell, P.T., and Yumoto, K. (2008, August). Polar Ultraviolet Imager observations of solar wind‐driven ULF auroral pulsations. Geophysical Research Letters 35: L16101. https://doi.org/10.1029/2008GL034953.
148 Liu, Y.C.‐M., Huang, J., Wang, C. et al. (2014, November). A statistical analysis of heliospheric plasma sheets, heliospheric current sheets, and sector boundaries observed in situ by STEREO. Journal of Geophysical Research: Space Physics 119: 8721–8732. https://doi.org/10.1002/2014JA019956.
149 Lockwood, M., Owens, M., & Rouillard, A. P. (2009a, November). Excess open solar magnetic flux from satellite data: 1.