Kuidas mõista andmestunud maailma. Anto Aasa, Mare Ainsaar, Mai Beilmann, Marju Himma Muischnek,

Читать онлайн.
Название Kuidas mõista andmestunud maailma
Автор произведения Anto Aasa, Mare Ainsaar, Mai Beilmann, Marju Himma Muischnek,
Жанр Руководства
Серия
Издательство Руководства
Год выпуска 0
isbn 9789985588949



Скачать книгу

M. 2018. Direct Data-based Decision Making under Uncertainty. – European Journal of Operational Research 267, 1, 200–211.

      Haardörfer, R. 2019. Taking Quantitative Data Analysis Out of the Positivist Era: Calling for Theory-Driven Data-Informed Analysis. – Health Education and Behavior 46, 4, 537–540. https://doi.org/10.1177/1090198119853536.

      Hargittai, E. 2020. Potential Biases in Big Data: Omitted Voices on Social Media. – Social Science Computer Review 38, 1, 10–24. https://doi.org/10. 1177/0894439318788322.

      Heckmann, N.; Steger, T.; Dowling, M. 2016. Organizational capacity for change, change experience, and change project performance. – Journal of Business Research 69, 2, 777–784.

      Helbig, N.; Cresswell, A. M., Burke, G. B.; Luna-Reyes, L. 2012. The Dynamics of Opening Government Data: A White Paper. Center for Technology in Government, The Research Foundation of State University of New York, Albany. https://ctg.albany.edu/media/pubs/pdfs/opendata.pdf.

      Heymann, M. 2018. How the service industry can corral big data into a business‐building tool. – Global Business and Organizational Excellence 37, 5, 39–46.

      Hoffmann, A. L. 2019. Where fairness fails: Data, algorithms, and the limits of antidiscrimination discourse. – Information, Communication and Society 22, 7, 900–915. https://doi.org/10.1080/1369118X.2019.1573912.

      Holmberg, J.; Robèrt, K. E. 2000. Backcasting – A framework for for strategic planning. – The International Journal of Sustainable Development and World Ecology 7, 4, 291–308. https://doi.org/10.1080/13504500009470049.

      Hood, C. 2007. Public service management by numbers: Why does it vary? Where has it come from? What are the gaps and puzzles? – Public Money and Management 27, 95–102.

      Jackson, P. M. 2011. Governance by numbers: what we have learned over the past 30 years? – Public Money and Management 31, 13–26.

      Janssen, M.; Charalabidis, Y.; Zuiderwijk, A. 2012. Benefits, adoption barriers and myths of open data and open government. – Information Systems Management 29, 4, 258–268.

      Jetzek, T.; Avital, M.; Bjorn-Andersen, N. 2014. Data-Driven Innovation through Open Government Data. – Journal of Theoretical and Applied Electronic Commerce Research 9, 2. .

      Jones, R. A.; Jimmieson, N. L.; Griffiths, A. 2005. The impact of organizational culture and reshaping capabilities on change implementation success: The mediating role of readiness for change. – Journal of Management Studies 42, 2, 361–386.

      Jones-Devitt, S.; Samiei, C. 2011. The use of league tables and student surveys to determine ‘quality’ in higher education. – M. Modelsworth, L. Nixon, R. Scullion (eds.), The Marketisation of Higher Education: The Student as Consumer. Oxford: Routledge.

      Kearns, M.; Roth, A. 2019. The Ethical Algorithm: The Science of Socially Aware Algorithm Design. Oxford University Press.

      Kennedy, H.; Poell, T.; Van Dijck, J. 2015. Data and agency. – Big Data and Society 2, 2. https://doi.org/10.1177/2053951715621569,

      Kirsch, C.; Parry, W.; Carey, P.; Shaw, D. 2014. Empirical development of a model of performance drivers in organizational change projects. – Journal of Change Management, 14, 1, 99–125.

      Latzer, M.; Saurwein, F.; Just, N. 2018. Governance-Choice Method: In Search of the Appropriate Level of State Intervention. – H. Van den Bulck et al. (eds.), The Palgrave Handbook of Media Policy Research Methods. Palgrave Macmillan.

      Lehne, M.; Sass, J.; Essenwanger, A.; Schepers, J.; Thun, S. 2019. Why digital medicine depends on interoperability. – NPJ: Digital Medicine 2, 1, 1–5. https://doi.org/10.1038/s41746-019-0158-1.

      Löbl, D.; Onneken, P. (rež.) 2015. Schlank durch Schokolade: Eine Wissenschaftslüge geht um die Welt.

      Lynn, L. E. 2012. Public Management. – B. G. Peters, J. Pierre (eds.), Sage Handbook of Public Administration. London: Sage, 17–31.

      Lyotard, J. F. 1979. The Postmodern Condition: A Report on Knowledge. Trans. G. Bennington, M. Massumi. Minneapolis MN: University of Minnesota Press.

      Masso, A.; Kasapoglu, T. 2020. Understanding Power Positions in a New Digital Landscape: Perceptions of Syrian Refugees and Border Experts on Relocation Algorithm. – Information, Communication, Society 23, 8, 1203–1219. https://doi.org/10.1080/1369118X.2020.1739731.

      Masso, A.; Männiste, M.; Siibak, A. 2020. ‘End of Theory’ in the Area of Big Data: Methodological Practices and Challenges in the Social Media Studies. – Acta Baltica Historiae et Philosophiae Scientiarum 8, 1, 33–61. https://www.ies.ee/bahps/acta-baltica/abhps-8-1/02_Masso-2020-1-02.pdf.

      May, T. 2011. Social Research: Issues, Methods and Process. Maidenhead, Berks: Open University Press, Mc Graw-Hill.

      Menzel, D. C. 1999. The morally mute manager: fact or fiction? – Public Personnel Management 28, 4, 515–527.

      Milan, S.; Treré, E. 2019. Big Data from the South(s): Beyond Data Universalism. – Television and New Media 20, 4, 319–335. https://doi.org/10.1177/1527476419837739.

      Miller, P. 2001. Governing by numbers: why calculative practices matter. – Social Research 68, 379–396.

      Männiste, M.; Masso, A. 2018. The role of institutional trust in Estonians’ privacy concerns. – Studies of Transition States and Societies 10, 2, 22–39. https://nbn-resolving.org/urn:nbn:de:0168-ssoar-62614-8.

      Männiste, M.; Masso, A. 2020. ‘Three Drops of Blood for the Devil’: Data Pioneers as Intermediaries of Algorithmic Governance Ideals. – Mediální Studia = Media Studies 14, 1, 55–74.

      Mühlhoff, R. 2019. Human-aided artificial intelligence: Or, how to run large computations in human brains? Toward a media sociology of machine learning. – New Media and Society, 1461444819885334. https://doi.org/10.1177/1461444819885334.

      Noble, S. U. 2018. Algorithms of Oppression: How Search Engines Reinforce Racism. NYU Press.

      Noda, T.; Yoshida, A.; Honda, M. 2019. Economic Effect by Open Data in Local Government of Japan. – J. Baghdadi, A. Harfouche (eds.), ICT for a Better Life and a Better World: The Impact of Information and Communication Technologies on Organizations and Society. Springer, 165–173.

      Obermeyer, Z., Powers, B.; Vogeli, C.; Mullainathan, S. 2019. Dissecting racial bias in an algorithm used to manage the health of populations. – Science 366 (6464), 447–453. https://doi.org/10.1126/science.aax2342.

      Palonka, J.; Begovic, D. 2017. Data Management Maturity for Knowledge-Based Decision-Making: Case of Polish Third Sector Organizations. – N. Baporikar (ed.), Global Practices in Knowledge Management for Societal and Organizational Development. IGI Global, 126–144.

      Parry, W. 2015. Big Change, Best Path: Successfully Managing Organizational Change with Wisdom, Analytics and Insight. Kogan Page Publishers.

      Patra, R. 2019. Digital Inequalities in a Datafied World: A Case of the Estonian e-Residency Program: Magistritöö. Ragnar Nurkse innovatsiooni ja valitsemise instituut, Tallinna Tehnikaülikool.

      Peters, J. D. 2001. “The only proper scale of representation”: The politics of statistics and stories. –