Название | Aristotle: The Complete Works |
---|---|
Автор произведения | Aristotle |
Жанр | Языкознание |
Серия | |
Издательство | Языкознание |
Год выпуска | 0 |
isbn | 9782379261565 |
To sum up, then: demonstrative knowledge must be knowledge of a necessary nexus, and therefore must clearly be obtained through a necessary middle term; otherwise its possessor will know neither the cause nor the fact that his conclusion is a necessary connexion. Either he will mistake the non-necessary for the necessary and believe the necessity of the conclusion without knowing it, or else he will not even believe it-in which case he will be equally ignorant, whether he actually infers the mere fact through middle terms or the reasoned fact and from immediate premisses.
Of accidents that are not essential according to our definition of essential there is no demonstrative knowledge; for since an accident, in the sense in which I here speak of it, may also not inhere, it is impossible to prove its inherence as a necessary conclusion. A difficulty, however, might be raised as to why in dialectic, if the conclusion is not a necessary connexion, such and such determinate premisses should be proposed in order to deal with such and such determinate problems. Would not the result be the same if one asked any questions whatever and then merely stated one’s conclusion? The solution is that determinate questions have to be put, not because the replies to them affirm facts which necessitate facts affirmed by the conclusion, but because these answers are propositions which if the answerer affirm, he must affirm the conclusion and affirm it with truth if they are true.
Since it is just those attributes within every genus which are essential and possessed by their respective subjects as such that are necessary it is clear that both the conclusions and the premisses of demonstrations which produce scientific knowledge are essential. For accidents are not necessary: and, further, since accidents are not necessary one does not necessarily have reasoned knowledge of a conclusion drawn from them (this is so even if the accidental premisses are invariable but not essential, as in proofs through signs; for though the conclusion be actually essential, one will not know it as essential nor know its reason); but to have reasoned knowledge of a conclusion is to know it through its cause. We may conclude that the middle must be consequentially connected with the minor, and the major with the middle.
7
It follows that we cannot in demonstrating pass from one genus to another. We cannot, for instance, prove geometrical truths by arithmetic. For there are three elements in demonstration: (1) what is proved, the conclusion-an attribute inhering essentially in a genus; (2) the axioms, i.e. axioms which are premisses of demonstration; (3) the subject-genus whose attributes, i.e. essential properties, are revealed by the demonstration. The axioms which are premisses of demonstration may be identical in two or more sciences: but in the case of two different genera such as arithmetic and geometry you cannot apply arithmetical demonstration to the properties of magnitudes unless the magnitudes in question are numbers. How in certain cases transference is possible I will explain later.
Arithmetical demonstration and the other sciences likewise possess, each of them, their own genera; so that if the demonstration is to pass from one sphere to another, the genus must be either absolutely or to some extent the same. If this is not so, transference is clearly impossible, because the extreme and the middle terms must be drawn from the same genus: otherwise, as predicated, they will not be essential and will thus be accidents. That is why it cannot be proved by geometry that opposites fall under one science, nor even that the product of two cubes is a cube. Nor can the theorem of any one science be demonstrated by means of another science, unless these theorems are related as subordinate to superior (e.g. as optical theorems to geometry or harmonic theorems to arithmetic). Geometry again cannot prove of lines any property which they do not possess qua lines, i.e. in virtue of the fundamental truths of their peculiar genus: it cannot show, for example, that the straight line is the most beautiful of lines or the contrary of the circle; for these qualities do not belong to lines in virtue of their peculiar genus, but through some property which it shares with other genera.
8
It is also clear that if the premisses from which the syllogism proceeds are commensurately universal, the conclusion of such i.e. in the unqualified sense-must also be eternal. Therefore no attribute can be demonstrated nor known by strictly scientific knowledge to inhere in perishable things. The proof can only be accidental, because the attribute’s connexion with its perishable subject is not commensurately universal but temporary and special. If such a demonstration is made, one premiss must be perishable and not commensurately universal (perishable because only if it is perishable will the conclusion be perishable; not commensurately universal, because the predicate will be predicable of some instances of the subject and not of others); so that the conclusion can only be that a fact is true at the moment-not commensurately and universally. The same is true of definitions, since a definition is either a primary premiss or a conclusion of a demonstration, or else only differs from a demonstration in the order of its terms. Demonstration and science of merely frequent occurrences-e.g. of eclipse as happening to the moon-are, as such, clearly eternal: whereas so far as they are not eternal they are not fully commensurate. Other subjects too have properties attaching to them in the same way as eclipse attaches to the moon.
9
It is clear that if the conclusion is to show an attribute inhering as such, nothing can be demonstrated except from its ‘appropriate’ basic truths. Consequently a proof even from true, indemonstrable, and immediate premisses does not constitute knowledge. Such proofs are like Bryson’s method of squaring the circle; for they operate by taking as their middle a common character-a character, therefore, which the subject may share with another-and consequently they apply equally to subjects different in kind. They therefore afford knowledge of an attribute only as inhering accidentally, not as belonging to its subject as such: otherwise they would not have been applicable to another genus.
Our knowledge of any attribute’s connexion with a subject is accidental unless we know that connexion through the middle term in virtue of which it inheres, and as an inference from basic premisses essential and ‘appropriate’ to the subject-unless we know, e.g. the property of possessing angles equal to two right angles as belonging to that subject in which it inheres essentially, and as inferred from basic premisses essential and ‘appropriate’ to that subject: so that if that middle term also belongs essentially to the minor, the middle must belong to the same kind as the major and minor terms. The only exceptions to this rule are such cases as theorems in harmonics which are demonstrable by arithmetic. Such theorems are proved by the same middle terms as arithmetical properties, but with a qualification-the fact falls under a separate science (for the subject genus is separate), but the reasoned fact concerns the superior science, to which the attributes essentially belong. Thus, even these apparent exceptions show that no attribute is strictly demonstrable except from its ‘appropriate’ basic truths, which, however, in the case of these sciences have the requisite identity of character.
It is no less evident that the peculiar basic truths of each inhering attribute are indemonstrable; for basic truths from which they might be deduced would be basic truths of all that is, and the science to which they belonged would possess universal sovereignty. This is so because he knows better whose knowledge is deduced from higher causes, for his knowledge is from prior premisses when it derives from causes themselves uncaused: hence, if he knows better than others or best of all, his knowledge would be science in a higher or the highest degree. But, as things are, demonstration is not transferable to another genus, with such exceptions as we have mentioned of the application of geometrical demonstrations to theorems in mechanics or optics, or of arithmetical demonstrations to those of harmonics.
It is hard to be sure whether one knows or not; for it is hard to be sure whether one’s knowledge is based on the basic truths appropriate to each attribute-the differentia of true knowledge. We think we have scientific knowledge if we have reasoned from true and primary premisses. But that is not so: the conclusion must be homogeneous with the basic facts of the science.
10
I call the basic truths of every genus those clements in it the existence of which cannot be proved. As regards both these primary truths and the attributes dependent on them the meaning