Альтернативный волновой анализ. Валерий Васильевич Борискин

Читать онлайн.



Скачать книгу

свечей «до и после» можно изменять, тем самым добиваясь сокращения величины появления ложных фракталов, но и, одновременно, большего запаздывания данного индикатора. В программе МТ4, для того чтобы минимизировать запаздывание, метка фрактала появляется после того, как сформируются «две свечи до и одна свеча после» метки фрактала. Тем не менее если «вторая свеча после» оказывается выше/ниже ценового экстремума, фрактал удаляется.

      3

      Градацию углов для различных состояний рынка можно изменять по своему желанию. Я использовал равномерное деление угла в 1800 на три части.

/9j/4QAYRXhpZgAASUkqAAgAAAAAAAAAAAAAAP/sABFEdWNreQABAAQAAAA8AAD/7gAOQWRvYmUAZMAAAAAB/9sAhAAGBAQEBQQGBQUGCQYFBgkLCAYGCAsMCgoLCgoMEAwMDAwMDBAMDg8QDw4MExMUFBMTHBsbGxwfHx8fHx8fHx8fAQcHBw0MDRgQEBgaFREVGh8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx//wAARCADhAbMDAREAAhEBAxEB/8QAnQAAAQUBAQEBAAAAAAAAAAAAAAQFBgcIAwECCQEBAQEAAAAAAAAAAAAAAAAAAAECEAABAwMBBAUGBwwJAgMGBwABAgMEABEFBiExEgdBUWETFHGBkSIyCKGxQlJiciPB0YKSstIzU2OTFRaiQ3OzJDRUVRfwGMJEJuHx05QlNaNkhEWFpScRAQEBAQEAAAAAAAAAAAAAAAABESEx/9oADAMBAAIRAxEAPwDVNAUBQFAUBQFAUBQFAUBQFAUBQFAUHw68yyjjecS2gb1LISPSaBnna20pC4g/k2OJOxSWz3qgQbWs2FGgZJXN3SrJs0mTJ37UNhI2fXUg7fJQNUnnTGH+Vxa177l10I8mxKV/HQNUnnHqBav8PEitI+kHFqv5eJI+CgQv81tYOBQQ+0yVbihpJt5OPj+GgRucxdaOAhWTWLi3qttJ+FKBQIntX6qdUFLy0sEC3qPLQPQkpFBz/mfUv+7TP/mHfzqD4OodQE3OTlknp79z86gP5hz/APucv9+5+dQfSdS6jSLJysxI7JDo/wDFQejVGphuy83/AOYd/OoFbGvNXsgBGUeNhwjjIc2fhhW3toFrPM/WjaiVTUugi3Ctlq3l9VKTQLWub+qkABTcRwjpU2vb+KtNA6R+dL4IEnFJUL+spt4psOwKSr46B0j85MAsgPxJTRJsSkIWAOs+sk/BQO8LmTo6UQPHdwv5ryFo6be0Rw/DQPsTKYyYkKiS2ZAVtBacSvds6CaBVQFAUBQFAUBQFAUBQFAUBQFAUBQFAUBQFAUBQFAUBQFAUBQFAUBQcZUyJEbLsp9thsXJW4oIGwXO0kUEXyXNLScPiS08uY4n5LCCQTs+UrhT6KCL5HnNMVxJx2PbaFvVcfUVno+Sng+OgjGQ1/q6dcOZBxlB+QxZkDd0osro66BifkyJDneSHVvOfPcUVHffeb9dBzoPtth502abUs9SQT8VArawmXd9mI6OoqSUj0qtQLWNHZty3EhtoHpW4j/wlRoFjegcgra5NioHVxLJ/IoFbXLxs/pcs2nr4Wyr41JoFSOXeIFu8yyldfC0E/GtVB1/4+0//ubv4qKDp/x/pb/XyPS3+bQe/wDH+lv9fI9Lf5tB4eXenFH1Mi+kdIVwK+4KD08ssKoDu8o4D2oSr4iKD4VynZUfscwD1BTFvhDn3KDivlDlyPsJ8ZZt8vvE7fMlVAme5S6sbBKPDP8AY26Rf8dKKBrk6A1jH9vFuq/syh38hSqBqk4fLxf8zBkMW3940tH5QFAkoCgdIWqdRwiDGyUhAG5BcUpG+/squn4KCTY7m9qOPZMxpmYkAC5T3a9lulHq/wBGgk+O5w4F6yZsZ6IqwuoWdRfZcXFlf0aCV4vUuByiQYM5p5Rt9nxcK9ouLoVZXwUDlQFAUBQFAUBQFAUBQFAUBQFAUBQFAUBQFAUBQFAUHOTKjRWVPSXUMsp2qccUEpHlJoIfmua2nYIUiHxZB8bg36re0X9sj4gaCDZXmpqmaSmOtEFo2sGU3V+Oq59FqCKyps2WvjlPuSF7TxOrUs7d+1RPVQckNrcWEISVrVsSlIuT5hQPMXRWp5KO8EBxprf3j9mRbr9fhJ8woG3LvaS0/JRH1FqGJBfXt7hJ4126yPVIHba1BYWktI6Cy0VqXHkLyTDo4kOB4FtQ+iWgnZ56CaN6T0vBa4o+MjhSdy1oDih+EviNBQfvH8ydS6UYxaNPyExDIddQ8O7QsFKUpIACgbbT0UFCr568zFG5yg/cs/m0Hz/zjzL/AN0H7lr82gP+ceZX+6D9y1+bQH/OPMv/AHQfuWvzaA/5x5l/7oP3LX5tAf8AOPMv/dB+5a/NoD/nHmX/ALoP3LX5tAf85cy/90H7lr82gUs8/uZDZTeWyu2/iaG3y8JFA5xPeV18yR3rMN5I32Q6lR8/eEfBQSXE+9dkW1pGQxJ4flOMPXPmQtKfyqC0dHe8jo/MOtsGYYklZASxLHdEk7gFXLZPYFUFxYnUsaWlJSsG9A/tPJWkEGg6UCKbg8NOv4yCxIJ3qcbQpV/KRegYZvLDR0m5TEVGUd6mXFj+ioqT8FAwT+TEVQJx+SWg9CJCAu/4SOC34tBGshys1dEuWmW5iB8phwXt9VfAr0CgjU3GZKCrgmxXYytwDqFIv5OICgTJWpCgpJKVJN0qBsQRuIoH3Fa51RjLCPPcW0P6l77VG76dyPMaCaYfnI0rhRl4RRuBfjG47SUKN/QaCdYnUeDyybwJjbyrAlsGzguL7UGyqByoCgKAoCgKAoCgKAoCgKAoCgKAoCgKAoEGWzuJxDBeyElDCehJN1K2E2SkbTuoK9zvOFagprCxuDaQJMgAmwI2pQD07d9BX2RzGVyThcnynZCjb9IokC2wWTuHmoE7Ed+Q6llhtTrqtiW20lSj5ALmgl2H5V6nngOSUox7J23eN127EJufxrUEyxXKHT0bhVOddnuDeknumz+Cj1v6VBLsdh8VjW+CBEajDcS2gJJ8qt589BFuZmbcxWnZ81FuKOw46Ad3qIKtvooPztlyp2VnPzpry5EuQsreeWbqUo0GgPdG1HOROymGcdUqK2Wn2GySQhSypLluw2TQa4kK4ohPZQZC97EkuYkftXvyU0FfaJjheAaUUg+uvbYH5VA++DT8xP4o+9QHg0/MT+KPvUB4NPzE/iigPBp+YPxR96gPBp+Yn8UfeoDwafmD8UfeoDwafmJ/FH3qD4Vi4qrhTDZvvuhJv8FAnd07inB68Jk9obSD6QBQIZGhsI8DwsqZUflNqPxK4h8FAwZXl/PYQXYK/EpG0tKHC55uhXwUD5y45y6k0dMREmrdmYlBCHIrhPes22fZFXV8w7PJQbJ0Fr3G5/GR5sJ9L0d9IUhYPmII6CDsI6KCfsuhaQRQdKAoCgKD5cabdQpt1AW2rYpCgCCO0GgjWV5b6TyHErwnhHVf1kU93b8Daj+jQQ7K8m8g3xLxc1EhI2hp4FtfkChxJPwUEJyun81iV8GRhuR9tgtQugnsWLpPmNAhbddaWHGlqQtO5aSQRfZvFBLcFzO1HjOBt9Ynxk7Ch8njtYCwcG3o6QaCydP8w9O5jhbDvhJR/wDLv2SSdvsq9k7qCTUBQFAUBQFAUBQFAUBQFAUBQFAmyGTx+OjmROfRHZHy1m3Zs66Cs9Tc25DpXGwSO6aIsZjg9c3G3hQdibdZoK8lzJUx9T8p1TzyySpaySdpv0+WgWYbTeazLvBjoq3gDZbvstp+ss2TQWNguT0JoJdzUgyHN5jsEobHYVn11ea1BOsbhsVjGu6x8VuMjce7SAT9ZW9XnNAsoCgKCtedCePR+WRv4oj4t5W1UGDMFG75Lht7JHxUFu+6ps1jlB+yb/LNBs9z/JeagyH72H6XE/2r35KaCI8vI/HphlX7Rz8qgkvhB1UB4QdVAeEHVQHhB1UB4QUB4QdVAeEFAeEHVQHhBQHhB1UB4QUEc1bolnLR1SIqA3kkC6Fbg4B8hX3DQNfJ7mRN0XqNMOa4pGIkud3LaXs7l2/D3tjutay+zyUG59MZpubFbWlQUFAEEGgkqTcXoPaAoCgKAoCg+XG23UKbcSFtqFlIUAQR2g0EUzXLHTGR4lstGBIO5cfYi/a2fVt5LUFd5/lpqPFcTrLfj4qdvesAlYH0m/aHmuKCJEEEg7CNhBoJRp3mJn8MUtlzxkQb47xJI3n1V7SNpoLV03rnB51ASy54eX0xXiAvZYertsobaCQ0BQFAUBQFAUBQFAUBQFBDNW8ycbh+KLC4ZmQFrpB+zRfrUN5t0UFRZjN5PMSjKyD5ec28IOxKQTeyQNwoPrDYDL5mR3GOjKeULcaxsQgdalnYKC0NNcp8ZCCX8woTpO/uBcMJPwFfnsOygnbLLLDSWmW0tNIFkNoASkDqAGwUH3QFAUHhUALmgbshmosRtSlrAtQZ654869NxoEvEIf8AEz3m1tGMyQpSeNNrrO5G/p29lBm/RkJxbL61IIQpSeBRGw2ve1BZHusC2tMsOptH94qg2c5/kvNQZD97H9Lif7V78lNAw8r2OPSLCrf1rv5ZoJb4XsoPPC9lB74XsoDwvZQHheyg88L2UHvheygPC9lB54XsoPfC9lAeF7KA8L2UFX819LCM43m4yLIeUGpgG4Lt6i/wgLHzddBdnuycwHclg/4VKcKpeKKWSTvUyoHuj5gkp81BpqG8HGknsoFFAUBQFAUBQFAUBQMWoNFafziVKlRw3JO6WzZDt+07lfhXoKr1Ny2zuG432U+Pgp2980DxpH029pHlFxQRNKlIUFJJSpJulQ2EEbiDQT7SXNKZACIeY4pUNICUPja8jb8ok+uAPPQWvAyELIRkyoTyJDC/ZcQbi43jy0CigKAoCgKAoCgKDnJkx4zDkiQ4lphoFTjizZKQOkk0FS625mSZq3cfh1d1CsUOyB7bhO/hI3J6KCAJQpaghAKlKICUgXJJ2ACgsbSXKh+QG5meuyyfWTBTscUP2ivkeQbfJQWhCgw4MZEaGyhhhHsttgJA9HTQdioDpoPQQaAoAkCgTSp7DCSpagLUFa8wec2m9LxFOzpiW1G/dNA8TiyOhCBtPxddBl7WvPPW2tJLkLBJcx+PUSFLQbPKSfnuDY35E7e2gi8DSuPgtmblnkuKB4lKcNmwd/TtUfL6KB607l4eVmvRobZ7mOgHvlbOIk22J6BsoJL7rgtrjMDqQn+8VQbMc/yXmoMh+9h+lxP9q9+SmgRco2OPRMZX7V78s0E08L2UHnhuygormpNnx9aS2mZLraAhkhCFqSBdpJ3A0CCLpnmLKQFx4s9xChcFKl7R+NQKP5J5pf7fkfxlfnUB/JPNL/b8j+Mv86g8Oj+abP2gg5NJHSguE7fqm9B8mBzXigHuc2hI9b1RKKdnXa49NAROYWuMRIDcl9bpT7Uaa3cnykhLg9NBbuhtVwtVxld02Y05kXfiqN9nz0K2cSfi+MJezg3HknulJWob0pUCfQDQJnce40opWkg0DXqHAJy2Dm45QF5DSktk7gsbUHzKANBVPIbOvYfmJFjklLc9K4zqTsspI40m3XxI4fPQbz0/J72Kg36KB6vQecaeug9oCgKAoCgKAoCgKCI6r5cYjNJXIjBMHInb3qB6iz+0QPyht8tBUGcwGVwksxcgyW1bShY2oWOtCumg76d1TlsBKDsJz7JSgXo6tqHANlj1eUUF2aY1bitQxyuIvhkNgd/GVsWm439o7RQPVAUBQFAUBQcpcuNEjOSZLiWmGklTjijYACgpLXOuZOoJJjxyprFNK+za3Fwj5a/uDooI9i8VPyk1uFBaL0hw7EjcB0qUegDroLo0dy/x2AQmQ/wysoR6z5Hqt33hoHd9bfQSpS0pFyaBryWdiQ2ypawLUFNa395zSOnJoiBxc+UFhLzMThWWxfaVqJSkEfNvegmuh+benNTxEycdMQ+2bBQBspB+atJspJ7DQTpORjqb4+MWoIzqnX+GwkN2TMktsMtC63HFBKR5SaDMfMb3m8jk3nMdpFtSiolInLSTf+yaO0+VXooKsa07k8rKXk9RS3Hnl+s5xr4lEb/WWfZA6hQdJWpsZj0phYdhMh6/CjgH2YUdmy21Z8npoHbH8p9cZ5j+K53jhxbcTbKxZ0jsb3Njy7eygT8n4wdk5VYFwgMgH6xX+bQTT3Whxa2zS93qo2eVxZ+5QbJd/wAl+DQZD97H9Lif7V78lNB98l2OPQUVVv65/wDvDQTrwvZQHheygzlzlRwa/nJ/Zsf3SaDXPLjTkV3ERVKQDdtH5IoJ8nScO36Meig9/lOH+rHooPDpKEf6seig4PaMgqSfsx6KCqucWktOxsI6qfEQ8kAlHEBxJV1pO9J8lBmxpyXCkd7C4kJaJ4CnZs7bb7iqOStY5mNLDyH1pUk3BBIqi1tB80I2XCIGbUONfqtyz7SVfTPSKmCwjgny7woTxJO0KG4jrvUGep2jMxg+ZaZcdHFGZyqXUFO2zanwqxt9E2oNuaPcUYTYVsNhQSGdI7lgr6hQUHlfeaw+H19ktNZdlUaNEcbRHySTxtq42kLUHUgcSLKURcXHXagtzTmt8Vl4rT8WQ2806AptxCgpKgekEbDQSZt9Dguk3oOlAUBQFAUBQFAUCTK4nH5WGuHPZS+wvoVvB+ck70ntFBS+s9BTtPuGQyTJxajZD9vWQTuS4B8e40EfxeUm4ua3NhOlqQ0bgjcR0pUOkGgvLR+sIWooXEmzU5oDxMe+0H5yetJoJDQFAUBQeKUlKSpRCUpF1KOwADpNBS3MTWpzUrwMFxX8MYUdo2JdWPldoHRQRnDYafmMg3Bgt8bzm8nYlKRvUo9AFBeultK47TsAMMALkLAMmURZTivuJHQKBwl5FiOgqWoC1BV3MbnfprS0ZRlyh3yge6jN+s6v6qB8Z2dtBlXmBz11fq1xyPFcVjcYq47ppR71Y+m4LWv1J+Ggr5iCVe0L3oHPFO6hwUxORwklyPJR0tnaRvspJ2LHYRQWnD96LPs4VUeTC48okcCVpVwsn6SgbqH1fhFBBcnJ1preaJuelrTHvxNMm6UJB/VtdH1lbfLQdHJGntNtFtCQ7LttbSQpw/XV8kf9WoFmmtD695iyEeHaMLDE/p1hSWrX+SPadV8HaKDSvLL3etN6aS3ILHichb1pr4CnNu/h6EDyee9BLtfY6Lj9OylISE920tXoSTQZP5FRO8Zy7lt62E+gOH/xUEg91gf+s835G/7xdBsd3/JeagyH72H6XE/2r35KaBz5FscfLuIr9s//AHhoLB8LQeeGoMy872VjmNOSB/VR/wC5TQa20JqzT+Lw8UTJaUFLSL9PyRQWRhNT6fzKD/DZrUhSfaQlXrD8E7aB2sKAsKAIFqDP/vKzS3jmmAbd4rb5BQZzgyGpGSjQlLLcVALs1aNilC9kNpPRxEG/ZWhLc/ywjZTSKc9ggpbjRcTKje0ocCyLpPTU0VXCcfhSgQSADt8xqi4MVrjVGT0qMPBktiS0olgOq4OJAFylS+i28X2UEEa1FmIuaUxmWjFmodA7y/qlYNwLgnf0G+2g1nyi5hwcyyiDLUGp4FmzuC+zy1LBYuoFFOPcPYagxnprQ2G5h+8FncFmS6IbqJSy6wrgcQtltKULSSFJ9VXzgRQOOpOU3OPk3LcyumpC85plCit1bCFKCUjpkxQSpHa42SOsjdQT/lf7zGEzJag5RX8OyKrJ7p1Q7tZ3fZubAfIbHy0F94vPxJjaVIWDftoHZK0qFxQe0BQFAUBQFAUHw8y0+0tl5CXGnAUrbUAUqB2EEGgprX+gHMK4rIY9JXinD6yd6mFHoPWg9B8x7QimLyk3FzmpsJwtSGjcEbiOlKh0g9NBfmltRxc/im5jJSHgAmSyDfu3LbRt226qB3oCgKCu+a2rDFj/AMCiLs/ITxS1WvZpVwEX61fFQVVFivypLUaOguvvKCG0J3lStgFBeekdNwtM4sIUUqnvAKlv9avmJ+in/wBtA36v5jYPAwnZM2W3HZbHrOOKCR5NvSeqgy5zJ95zK5RbsLS6SywbpOQdHrkdbbZ3eVXooKTfVOyEpyXOeXIkunicdcUVrUe1RoFsbH7tlA7Rsf2UDrGgbtlAtZwUJchMlTCC+nc4RtoI5qnUGZivKhNMLgt