Название | On Laboratory Arts |
---|---|
Автор произведения | Richard Threlfall |
Жанр | Языкознание |
Серия | |
Издательство | Языкознание |
Год выпуска | 0 |
isbn | 4064066106201 |
(5) When the hole is through the glass be exceedingly careful not to force the file through too rapidly, otherwise it will simply act as a wedge and cause a complete fracture.
(6) In many cases it is better to harden the file in mercury before commencing operations; both files and glass differ so much in hardness that this point can only be decided by a trial. If it is found necessary to harden the file, use either a large blow-pipe and a coke or charcoal bed, or else a small forge. A small blowpipe, such as is generally found in laboratories, does more harm than good, either by burning the end of the file or raising it to an insufficient temperature.
(7) To sharpen the file, which is often necessary after passing through the "skin" of the glass, put it in a vice so that the point just protrudes clear of the jaws. Then, using a bit of waste iron as an intermediary anvil or punch, knock off the least bit from the point, so as to expose a fresh natural surface. The same result may be brought about by the use of a pair of pliers.
If several holes have to be bored, it is convenient to mount the file in the lathe and use a bit of flat hard wood to press up the glass by means of the back rest. A drilling machine, if not too heavy, does very well, and has the advantage of allowing the glass to remain horizontal so that plenty of oil can be kept in the hole.
Use a very slow speed in either case—much slower than would be used for drilling wrought iron. It is essential that the lubricant should flow on to the end of the file very freely, either from a pipette or from the regular oil-feed. If a little chipping where the file pierces the back surface is inadmissible, it is better, on the whole, to finish the bore by hand, using a very taper file. It is not necessary to use a special file for the lathe, for a well-handled file can be chucked very conveniently in a three-jaw chuck by means of the handle.
Mr. Shenstone recommends a lubricant composed of camphor dissolved in turpentine for general purposes. With the object of obtaining some decisive information as to the use of this lubricant, and to settle other points, I made the following experiments. Using an old three-cornered French file, I chipped off the point and adjusted the handle carefully. I also ground out the file marks near the point, without hardening the file in mercury. Using kerosene and turpentine and camphor, I began to bore holes in a hard bit of 3/32 inch window glass.
Each hole was bored to about one-eighth inch in diameter in four minutes with either lubricant. After hardening the file in mercury and using kerosene, I also required four minutes per hole. After mounting the file in a lathe which had been speeded to turn up brass rods of about one-half-inch diameter, and therefore ran too fast, I required one and a half minutes per hole, and bored them right through, using kerosene. On the whole, I think kerosene does as well as anything, and for filing is, I think, better than the camphor solution. However, I ought to say that the camphor-turpentine compound has probably a good deal to recommend it, for it has survived from long ago. My assistant tells me he has seen his grandfather use it when filing glass.
I beg to acknowledge my indebtedness to Mr. Pye, of the Cambridge Scientific Instrument Company, for showing me in 1886 (by the courtesy of the Company) the file method of glass-boring; it is also described by Faraday in Chemical Manipulation, 1228.
It is not necessary, however, to use a file at all, for the twist drills made by the Morse Drill Company are quite hard enough in their natural state to bore glass. The circumferential speed of the drill should not much exceed 10 feet per minute. In this way the author has bored holes through glass an inch thick without any trouble except that of keeping the lubricant sufficiently supplied. For boring very small holes watchmaker's drills may be used perfectly well, especially those tempered for boring hardened steel. The only difficulty is in obtaining a sufficient supply of the lubricant, and to secure this the drill must be frequently withdrawn.
My reason for describing the file method at such length is to be found in the fact that a Morse drill requires to be sharpened after drilling glass before it can be used in the ordinary way, and this is often a difficulty.
I ought to say that I have never succeeded in boring the barrel of a glass tap by either of these methods. [Footnote: I have been lately informed that it is usual to employ a splinter of diamond set in a steel wire holder both for tap boring and for drilling earthenware for riveting. The diamond must, of course, be set so as to give sufficient clearance for the wire holder.
For methods of using and setting diamond tools see § 55. It will suffice to say here that a steel wire is softened and filed at one end so as to form a fork; into this the diamond is set by squeezing with pliers. The diamond is arranged so as to present a point in the axis of the wire, and must not project on one side of the wire more than on the other. It is not always easy to get a fragment satisfying these conditions, and at the same time suitable for mounting. A drop of solder occasionally assists the process of setting the diamond.
In drilling, the diamond must be held against the work by a constant force, applied either by means of weight or a spring. I made many trials by this method, using a watchmaker's lathe and pressing up the work by a weight and string, which passed over a pulley. I used about 40 ounces, and drilled a hole 3/32 in diameter in flint glass at a speed of 900 revolutions per minute to a depth of one-eighth of an inch in eight minutes. I used soap and water as a lubricant, and the work was satisfactory.
Since this was set up, I have been informed by Mr. Hicks of Hatton Garden that it is necessary to anneal glass rod by heating it up to the softening point and allowing it to cool very slowly under red-hot sand or asbestos before boring. If this be done, no trouble will be experienced. The annealing must be perfect.]
§ 39. For boring large holes through thick glass sheets,
or, indeed, through anything where it is necessary to make sure that no accident can happen, or where great precision of position and form of hole is required, I find a boring tube mounted as shown in the picture (Fig. 36) is of great service. Brass or iron tube borers do perfectly well, and the end of the spindle may be provided once for all with a small tube chuck, or the tubes may be separately mounted as shown. A fairly high speed is desirable, and may be obtained either by foot, or, if power is available, is readily got by connecting to the speed cone of a lathe, which is presumably permanently belted to the motor.
Fig. 36.
After trying tubes armed with diamond dust, as will be presently explained, I find that emery and thin oil or turpentine, if liberally supplied below the glass, will do very nearly as well. The tube should be allowed to rise from the work every few seconds, so as to allow of fresh emery and oil being carried into the circular grooves. This is done by lifting the hinged upper bearing, the drill being lifted by a spiral spring between the pulley and the lower bearing shown at B. The glass may be conveniently supported on a few sheets of paper if flat, or held firm in position by wooden clamps if of any other shape. In any case it should be firmly held down and should be well supported. Any desired pressure upon the drill is obtained by weighting the hinged board A.
§ 40. The following method was shown to me by Mr. Wimshurst, but I have not had occasion to employ it myself. It is suitable for boring large holes through such glass as the plates of Mr. Wimshurst's Influence machines are usually made of. A diamond is mounted as the "pencil" of a compass, and with this a circle is drawn on the glass in the desired position. The other leg of the compass of course rests on a suitable washer.
To the best of my recollection the further procedure was as follows. A piece of steel rod about one-eighth inch in diameter was ground off flat and mounted in a vice vertically, so as to cause its plane end to form a small horizontal anvil. The centre (approximately) of the diamond-cut circle of the glass was laid on this anvil so as to rest evenly upon it, and the upper surface (i.e. that containing the cut) was then struck smartly with a hammer, completely pulverising the glass above the anvil. The hole was gradually extended in a similar manner right up to the diamond cut, from which, of course, the glass broke away.
A similar method has long been known to glaziers, differing from the preceding in that a series of diamond cuts are run