Иллюзионист и его номер. Иллюзионный жанр как искусство. Павел Айдаров

Читать онлайн.



Скачать книгу

об этом разделении в главе «Интересное и прекрасное в искусстве».

      3

      Пер. М. Гаспарова

      4

      См. раздел «Анализ композиции иллюзионных номеров».

      5

      Этот тип связки использовался в номере «Металлические и перьевые кольца», анализ композиции которого дан в соответствующей главе.

      6

      Между вторым и третьим трюком здесь также видна связка на основе общности формы: свеча и волшебная палочка имеют сходную продолговато-округлую форму.

      7

      См. главу «Совершенство и фактор целостности».

      8

      См. главу «Основные композиционные связки».

/9j/4AAQSkZJRgABAQIAdgB2AAD//gA2SW50ZWwoUikgSVBQIEpQRUcgZW5jb2RlciBbNy4xLjM3NDY2XSAtIFNlcCAyNSAyMDEyO//iDFhJQ0NfUFJPRklMRQABAQAADEhMaW5vAhAAAG1udHJSR0IgWFlaIAfOAAIACQAGADEAAGFjc3BNU0ZUAAAAAElFQyBzUkdCAAAAAAAAAAAAAAAAAAD21gABAAAAANMtSFAgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEWNwcnQAAAFQAAAAM2Rlc2MAAAGEAAAAbHd0cHQAAAHwAAAAFGJrcHQAAAIEAAAAFHJYWVoAAAIYAAAAFGdYWVoAAAIsAAAAFGJYWVoAAAJAAAAAFGRtbmQAAAJUAAAAcGRtZGQAAALEAAAAiHZ1ZWQAAANMAAAAhnZpZXcAAAPUAAAAJGx1bWkAAAP4AAAAFG1lYXMAAAQMAAAAJHRlY2gAAAQwAAAADHJUUkMAAAQ8AAAIDGdUUkMAAAQ8AAAIDGJUUkMAAAQ8AAAIDHRleHQAAAAAQ29weXJpZ2h0IChjKSAxOTk4IEhld2xldHQtUGFja2FyZCBDb21wYW55AABkZXNjAAAAAAAAABJzUkdCIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAAEnNSR0IgSUVDNjE5NjYtMi4xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABYWVogAAAAAAAA81EAAQAAAAEWzFhZWiAAAAAAAAAAAAAAAAAAAAAAWFlaIAAAAAAAAG+iAAA49QAAA5BYWVogAAAAAAAAYpkAALeFAAAY2lhZWiAAAAAAAAAkoAAAD4QAALbPZGVzYwAAAAAAAAAWSUVDIGh0dHA6Ly93d3cuaWVjLmNoAAAAAAAAAAAAAAAWSUVDIGh0dHA6Ly93d3cuaWVjLmNoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRlc2MAAAAAAAAALklFQyA2MTk2Ni0yLjEgRGVmYXVsdCBSR0IgY29sb3VyIHNwYWNlIC0gc1JHQgAAAAAAAAAAAAAALklFQyA2MTk2Ni0yLjEgRGVmYXVsdCBSR0IgY29sb3VyIHNwYWNlIC0gc1JHQgAAAAAAAAAAAAAAAAAAAAAAAAAAAABkZXNjAAAAAAAAACxSZWZlcmVuY2UgVmlld2luZyBDb25kaXRpb24gaW4gSUVDNjE5NjYtMi4xAAAAAAAAAAAAAAAsUmVmZXJlbmNlIFZpZXdpbmcgQ29uZGl0aW9uIGluIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdmlldwAAAAAAE6T+ABRfLgAQzxQAA+3MAAQTCwADXJ4AAAABWFlaIAAAAAAATAlWAFAAAABXH+dtZWFzAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAACjwAAAAJzaWcgAAAAAENSVCBjdXJ2AAAAAAAABAAAAAAFAAoADwAUABkAHgAjACgALQAyADcAOwBAAEUASgBPAFQAWQBeAGMAaABtAHIAdwB8AIEAhgCLAJAAlQCaAJ8ApACpAK4AsgC3ALwAwQDGAMsA0ADVANsA4ADlAOsA8AD2APsBAQEHAQ0BEwEZAR8BJQErATIBOAE+AUUBTAFSAVkBYAFnAW4BdQF8AYMBiwGSAZoBoQGpAbEBuQHBAckB0QHZAeEB6QHyAfoCAwIMAhQCHQImAi8COAJBAksCVAJdAmcCcQJ6AoQCjgKYAqICrAK2AsECywLVAuAC6wL1AwADCwMWAyEDLQM4A0MDTwNaA2YDcgN+A4oDlgOiA64DugPHA9MD4APsA/kEBgQTBCAELQQ7BEgEVQRjBHEEfgSMBJoEqAS2BMQE0wThBPAE/gUNBRwFKwU6BUkFWAVnBXcFhgWWBaYFtQXFBdUF5QX2BgYGFgYnBjcGSAZZBmoGewaMBp0GrwbABtEG4wb1BwcHGQcrBz0HTwdhB3QHhgeZB6wHvwfSB+UH+AgLCB8IMghGCFoIbgiCCJYIqgi+CNII5wj7CRAJJQk6CU8JZAl5CY8JpAm6Cc8J5Qn7ChEKJwo9ClQKagqBCpgKrgrFCtwK8wsLCyILOQtRC2kLgAuYC7ALyAvhC/kMEgwqDEMMXAx1DI4MpwzADNkM8w0NDSYNQA1aDXQNjg2pDcMN3g34DhMOLg5JDmQOfw6bDrYO0g7uDwkPJQ9BD14Peg+WD7MPzw/sEAkQJhBDEGEQfhCbELkQ1xD1ERMRMRFPEW0RjBGqEckR6BIHEiYSRRJkEoQSoxLDEuMTAxMjE0MTYxODE6QTxRPlFAYUJxRJFGoUixStFM4U8BUSFTQVVhV4FZsVvRXgFgMWJhZJFmwWjxayFtYW+hcdF0EXZReJF64X0hf3GBsYQBhlGIoYrxjVGPoZIBlFGWsZkRm3Gd0aBBoqGlEadxqeGsUa7BsUGzsbYxuKG7Ib2hwCHCocUhx7HKMczBz1HR4dRx1wHZkdwx3sHhYeQB5qHpQevh7pHxMfPh9pH5Qfvx/qIBUgQSBsIJggxCDwIRwhSCF1IaEhziH7IiciVSKCIq8i3SMKIzgjZiOUI8Ij8CQfJE0kfCSrJNolCSU4JWgllyXHJfcmJyZXJocmtyboJxgnSSd6J6sn3CgNKD8ocSiiKNQpBik4KWspnSnQKgIqNSpoKpsqzysCKzYraSudK9EsBSw5LG4soizXLQwtQS12Last4S4WLkwugi63Lu4vJC9aL5Evxy/+MDUwbDCkMNsxEjFKMYIxujHyMioyYzKbMtQzDTNGM38zuDPxNCs0ZTSeNNg1EzVNNYc1wjX9Njc2cjauNuk3JDdgN5w31zgUOFA4jDjIOQU5Qjl/Obw5+To2OnQ6sjrvOy07azuqO+g8JzxlPKQ84z0iPWE9oT3gPiA+YD6gPuA/IT9hP6I/4kAjQGRApkDnQSlBakGsQe5CMEJyQrVC90M6Q31DwEQDREdEikTORRJFVUWaRd5GIkZnRqtG8Ec1R3tHwEgFSEtIkUjXSR1JY0mpSfBKN0p9SsRLDEtTS5pL4kwqTHJMuk0CTUpNk03cTiVObk63TwBPSU+TT91QJ1BxULtRBlFQUZtR5lIxUnxSx1MTU19TqlP2VEJUj1TbVShVdVXCVg9WXFapVvdXRFeSV+BYL1h9WMtZGllpWbhaB1pWWqZa9VtFW5Vb5Vw1XIZc1l0nXXhdyV4aXmxevV8PX2Ffs2AFYFdgqmD8YU9homH1YklinGLwY0Njl2PrZEBklGTpZT1lkmXnZj1mkmboZz1nk2fpaD9olmjsaUNpmmnxakhqn2r3a09rp2v/bFdsr20IbWBtuW4SbmtuxG8eb3hv0XArcIZw4HE6cZVx8HJLcqZzAXNdc7h0FHRwdMx1KHWFdeF2Pnabdvh3VnezeBF4bnjMeSp5iXnnekZ6pXsEe2N7wnwhfIF84X1BfaF+AX5ifsJ/I3+Ef+WAR4CogQqBa4HNgjCCkoL0g1eDuoQdhICE44VHhauGDoZyhteHO4efiASIaYjOiTOJmYn+imSKyoswi5aL/IxjjMqNMY2Yjf+OZo7OjzaPnpAGkG6Q1pE/kaiSEZJ6kuOTTZO2lCCUipT0lV+VyZY0lp+XCpd1l+CYTJi4mSSZkJn8mmia1ZtCm6+cHJyJnPedZJ3SnkCerp8dn4uf+qBpoNihR6G2oiailqMGo3aj5qRWpMelOKWpphqmi6b9p26n4KhSqMSpN6mpqhyqj6sCq3Wr6axcrNCtRK24ri2uoa8Wr4uwALB1sOqxYLHWskuywrM4s660JbSctRO1irYBtnm28Ldot+C4WbjRuUq5wro7urW7LrunvCG8m70VvY++Cr6Evv+/er/1wHDA7MFnwePCX8Lbw1jD1MRRxM7FS8XIxkbGw8dBx7/IPci8yTrJuco4yrfLNsu2zDXMtc01zbXONs62zzfPuNA50LrRPNG+0j/SwdNE08bUSdTL1U7V0dZV1tjXXNfg2GTY6Nls2fHadtr724DcBdyK3RDdlt4c3qLfKd+v4DbgveFE4cziU+Lb42Pj6+Rz5PzlhOYN5pbnH+ep6DLovOlG6dDqW+rl63Dr++yG7RHtnO4o7rTvQO/M8Fjw5fFy8f/yjPMZ86f0NPTC9VD13vZt9vv3ivgZ+Kj5OPnH+lf65/t3/Af8mP0p/br+S/7c/23////bAEMAAwICAgICAwICAgMDAwMEBgQEBAQECAYGBQYJCAoKCQgJCQoMDwwKCw4LCQkNEQ0ODxAQERAKDBITEhATDxAQEP/bAEMBAwMDBAMECAQECBALCQsQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEP/AABEIAvMCTwMBEQACEQEDEQH/xAAeAAABBAMBAQEAAAAAAAAAAAACAAEDBAUGBwgJCv/EAFwQAAEDAgUCBAMEBgQICwQHCQECAxEABAUGEiExB0ETIlFhCHGBFDKRoQkVI0KxwRZSYtEkM0NykqLh8BclNFNjgoOTssLxGCejsxk1RGRlc3QohJSVpMPS0+L/xAAUAQEAAAAAAAAAAAAAAAAAAAAA/8QAFBEBAAAAAAAAAAAAAAAAAAAAAP/aAAwDAQACEQMRAD8A9iJSTM0BaZ3PagMJoDCY3oHCJ7UC0UCCDQPpEUC8MT7mgXh9wKB9HFA+jbcUC0bzQOGx33oH8Odo2oHLXpt70BBveaB/C32oF4YjYb0C8KdxtQIIoEG55oF4YP04NAi1MUD6PSgYtgmCPlQINSCKBFs8R2oH0bfKgYtbcUAhrbjmgRb3jTQIt+29AwbHYUDhvaaBFv2oG8OKBFsEAc0C0ado3JoHLe1Awa9aBeGJk80C0T23FA5bFAIbOncSRQFolPvQRhBJnTJ9aAg0Anfk0DhkTMb0C8IeWRFABaAM96BFsk/5wigZTRPeAKBaBExBoADSSsiII/OgZTUmIgd6B/D1JMiKBFMiPpQB4fZXHNAxaGrf5UEa0lMhPPFAKm9gkAgUArbIiIEcUDeFPPFAykwmT2NBGhCiOSIP40DrTzG00ArZJT5TAoBDYTpPpsKBFuZE96Bg3pB996AkpAOwoCVIgx+dAAUZ2oMgkSaCQJ9KAwkehNAURtQEAZigcJJH0oEE7TFAtI9KAgn3oH8OgfQIoHCPWgcI9BQPokQaB9APFA4bJ5oH8OdqBw3vvQF4Y9KBtG29A/hQPegXhb80CCN9xQIt77jagXhn0igHw5PHFAQa24oFo9qBFrbagfwwPU0DBr12oG8Lf5UDFB9PwoBDe3FAg3BmgXh770CLe1A4b9BQLwt9xQLw+9AwR7bUC8Legfw/QUCCPUUC8P8AeIoEW9t6BtB7cCgRaJHFAvDIFAxb2HtFAwbkkmgRTEfiKAVInjegRbkcUDKbhXlHagbwk7bUDFEH50CKPTigFTYImDtQCW/egjU0BuNzQMpA2jmgDw5JVPHFAJRO2/NAy25I9O9AxRp49aACmTIH5UDFHtQCU9ooA0aVSRQJSSTQNpg7bUD6ZoCQ2nfSN6C4kRwKA0jbegkQIoJNNA4RMUBBO00Dgb8UDhP1oHCBQFp2oEEiaAtI7UDpRzQEED8aB9AHAFA4TxQEUCNuaB9EnYUCKBHvQIpA9qB9EjegcN7UCCd4oFo9aBvDigcI2oEW5oH0RyaBvD9PWgRR5RHegRRG/JoG0QZ9aBvDmgXhxA9aBvDoF4e29AxRwB3oHCO9AtH71AxR7UC8P04oHDYO9A2gTPY0D6B60CLfagYognaQKBgjufpQPpAHuaBaAO1AwaJ3NAlIBJSaAFNgmKBJaAJPFA/h+8e9AKkgK7UDeGJ3G9AJRIBoB07DjfYUCUgfjQAE7kEUArak0AKb7iPagFSYngACgEoB4oBI27UArAiExJoA0ck7zQCUk+kxQIJmSfWgBSAe4k0DFPlmOKAUiZMUDaYkRQOkae3FBdSk0EqE96CQImgMJAEUDpTAoD0zQLRQEEg9qBwmBxQPoE8UBACaBwgExQFpHpQEECRFAWgHtQLSnvQElKe80BBIoFoHaaAtA5igbSOw3NAgiJ9KBadtxQOUBQgjigWgATFAtIiAPkKBigTMUCKRPG1A8CgbSO9AtI+tA2nYmgbQOaBwgGdqAdIPI+dAihIPG1AwR3igfQJ45oERGwFA2iN/xoH0CgbSI47UDFPl2FA+kbUDlO3FAJT2igWidzQPo9qBaZHFAimBtQBpBJJHzoFpntQNoCgdu8UDlAn5UALQFKHb5UCKJ7UA6YG3yM0A6d9xQCU7x60AlInb5UAlPY0AqTxAoAKB3iaAIG80AKAkb7UDRsYHNAJjiJNAJSJ24oAkgAxxtQNp2k80DKTNAwACBQCeeaASmSdzQZBA7CgkSKCQJNAYBAG3NAQEbRJoCiKBelAonigIRQEJoHCaAgPagJKZ70BARxzQEB3NAtM8DagMJigPTAigQHpQJUj50CAmgfSQPSgaJoHKRG1AogfPtQCB3NA4FARAPagaAe3FAin2oBCTJmgQT+E0CKfSgYcEd6BiIiBzQLSfnQNp7c0DkUDRv8qB4HzAoBAO8UD6fbmgRG0UC08EUCj8qBiJgGgRTvNAu1Ao3BFAiKAdNAiO1AtMUAkRsBuaBcUDRzHagApkR70CUNt6AAk/jQDE8UArSYgigECZoI1pknagApkUAlIgd4oAAjf0oAIiTHFAJBO4mgEjegaBzHtQNseaBvagEgat4oIyohIoMij2oJkjsaCRMxtQGAe43oEieaAzueaBf2aB4gUBAUDhJ/GgIA80BASdqAtJFASUGOKB9MbCgMDagdImgMA+lA5TtFA2mduKBAR70Cg8+tAgnueaBwkUBBud6AVJQjdRoHCUKEjefSgdLYVwTQOpsA7DegFSCRQDpMggc0CKCKBo7UAqG80CIIIg80CI235oGCZPpQJQFA0e1A4TA4oEBtQKI3maBiDyYoCKaBoHE0DGCPlQI/KgbkRO1AjAEigXHagXfagE+tAjOqDQDEb9+KBEfnQLSRPyoBIoBKZnvQDEzQCU70AkA7mgDQJmaASN5H1oAIgEdzQRkaoBoBMyDFBHAJNAHYxQBuEwKBDcb+lA0A78UDEelAC/zNBEsxse3egySB3BoJ2xPaglSmgJPNA8b0BAb7UD6T3oCCZG9AUcCKA9NA4HG1AYEUBRt86B0jb5UCImgMJnmgJKTwKAv7NAXO1AJ96BAetAtM/KgJKd4PFBVxTFMOwWzXfYldNsMokla1AAUHEM9/FjkvLVw5bYI+3iqkJM+GSmD2Enmg8+Zm+NLPF3cufqpBsGp