Metal Oxide Nanocomposites. Группа авторов

Читать онлайн.
Название Metal Oxide Nanocomposites
Автор произведения Группа авторов
Жанр Прочая образовательная литература
Серия
Издательство Прочая образовательная литература
Год выпуска 0
isbn 9781119364733



Скачать книгу

1999.

      40. Ren, Z.F., Huang, Z.P., Wang, D.Z., Wen, J.G., Xu, J.W., Wang, J.H., Calvet, L.E., Chen, J., Klemic, J.F., Reed, M.A., Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl. Phys. Lett., 75, 8, 1086–1088, 1999.

      41. Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., Provencio, P.N., Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science, 282, 5391, 1105–1107, 1998.

      42. Huang, Z.P., Xu, J.W., Ren, Z.F., Wang, J.H., Siegal, M.P., Provencio, P.N., Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition. Appl. Phys. Lett., 73, 26, 3845–3847, 1998.

      43. Salzmann, C.G., Llewellyn, S.A., Tobias, G., Ward, M.A.H., Huh, Y., Green, M.L.H., The role of carboxylated carbonaceous fragments in the functionalization and spectroscopy of a single-walled carbon-nanotube material. Adv. Mater., 19, 6, 883–887, 2007.

      44. Chu, H., Wei, L., Cui, R., Wang, J., Li, Y., Carbon nanotubes combined with inorganic nanomaterials: Preparations and applications. Coord. Chem. Rev., 254, 9–10, 1117–1134, 2010.

      45. Chu, K., Wu, Q., Jia, C., Liang, X., Nie, J., Tian, W., Gai, G., Guo, H., Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications. Compos. Sci. Technol., 70, 2, 298–304, 2010.

      46. Peng, X., Chen, J., Misewich, J.A., Wong, S.S., Carbon nanotube-nanocrystal heterostructures. Chem. Soc. Rev., 38, 4, 1076–98, 2009.

      47. Sainsbury, T. and Fitzmaurice, D., Carbon-nanotube-templated and pseudorotaxane-formation-driven gold nanowire self-assembly. Chem. Mater., 16, 11, 2174–2179, 2004.

      48. Lu, J., Effect of surface modifications on the decoration of multi-walled carbon nanotubes with ruthenium nanoparticles. Carbon, 45, 8, 1599–1605, 2007.

      50. Han, L., Wu, W., Kirk, F.L., Luo, J., Maye, M.M., Kariuki, N.N., Lin, Y., Wang, C., Zhong, C.J., A direct route toward assembly of nanoparticle-carbon nanotube composite materials. Langmuir: the ACS Journal of Surfaces and Colloids, 20, 14, 6019–25, 2004.

      51. Rahman, G.M., Guldi, D.M., Zambon, E., Pasquato, L., Tagmatarchis, N., Prato, M., Dispersable carbon nanotube/gold nanohybrids: Evidence for strong electronic interactions. Small, 1, 5, 527–530, 2005.

      52. Jiang, K., Eitan, A., Schadler, L.S., Ajayan, P.M., Siegel, R.W., Selective attachment of gold nanoparticles to nitrogen-doped carbon nanotubes. Nano Lett., 3, 3, 275–277, 2003.

      53. Quinn, B.M., Dekker, C., Lemay, S.G., Electrodeposition of noble metal nanoparticles on carbon nanotubes. J. Am. Chem. Soc., 127, 17, 6146–7, 2005.

      54. Yoon, B. and Wai, C.M., Microemulsion-templated synthesis of carbon nanotube-supported pd and rh nanoparticles for catalytic applications. J. Am. Chem. Soc., 127, 49, 17174–5, 2005.

      55. Day, T.M., Unwin, P.R., Wilson, N.R., Macpherson, J.V., Electrochemical templating of metal nanoparticles and nanowires on single-walled carbon nanotube networks. J. Am. Chem. Soc., 127, 30, 10639–47, 2005.

      56. Qu, J., Shen, Y., Qu, X., Dong, S., Preparation of hybrid thin film modified carbon nanotubes on glassy carbon electrode and its electrocatalysis for oxygen reduction. Chem. Commun., 1, 34–35, 2004.

      57. Xue, B., Chen, P., Hong, Q., Lin, J., Tan, K.L., Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes. J. Mater. Chem., 11, 2378–2381, 2001.

      58. Zhang, D., Shi, L., Fu, H., Fang, J., Ultrasonic-assisted preparation of carbon nanotube/cerium oxide composites. Carbon, 44, 2849–2867, 2006.

      59. Zanella, R., Basiuk, E.V., Santiago, P., Basiuk, V.A., Mireles, E., Puente-Lee, I., Saniger, J.M., Deposition of gold nanoparticles onto thiol-functionalized multiwalled carbon nanotubes. J. Phys. Chem. B, 109, 34, 16290–5, 2005.

      60. Wu, B., Hu, D., Kuang, Y., Liu, B., Zhang, X., Chen, J., Functionalization of carbon nanotubes by an ionic-liquid polymer: Dispersion of Pt and PtRu nanoparticles on carbon nanotubes and their electrocatalytic oxidation of methanol. Angew. Chem. Int. Ed., 48, 26, 4751–4754, 2009.

      61. Kim, D.S., Lee, T., Geckeler, K.E., Hole-doped single-walled carbon nanotubes: Ornamenting with gold nanoparticles in water. Angew. Chem. Int. Ed., 45, 1, 104–107, 2005.

      62. Mauter, M.S. and Elimelech, M., Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol., 42, 16, 5843–5859, 2008.

      63. Suarez-Martinez, I., Felten, A., Pireaux, J.J., Bittencourt, C., Ewels, C.P., Transition metal deposition on graphene and carbon nanotubes. J. Nanosci. Nanotechnol., 9, 6171–6175, 2009.

      65. Chancolon, J., Archaimbault, F., Bonnamy, S., Traverse, A., Olivi, L., Vlaic, G., Confinement of selenium inside carbon nanotubes. Structural characterization by X-ray diffraction and X-ray absorption spectroscopy. J. Non-Cryst. Solids, 352, 2, 99–108, 2006.

      66. Baaziz, W., Begin-Colin, S., Pichon, B.P., Florea, I., Ersen, O., Zafeiratos, S., Barbosa, R., Begin, D., Pham-Huu, C., High-density monodispersed cobalt nanoparticles filled into multiwalled carbon nanotubes. Chem. Mater., 24, 9, 1549–1551, 2012.

      67. Nguyen, T.T. and Serp, P., Confinement of metal nanoparticles in carbon nanotubes. ChemCatChem, 5, 12, 3595–3603, 2013.

      68. Kopyl, S.V.B., Bdikin, I., Maiorov, M., Sousa, A.C.M., Filling carbon nanotubes with magnetic particles. J. Mater. Chem. C, 1, 16, 2860–2866, 2013.

      69. Chen, B., Ma, Q., Tan, C., Lim, T.T., Huang, L., Zhang, H., Carbon-based sorbents with three-dimensional architectures for water remediation. Small, 11, 27, 3319–3336, 2015.

      70. Gupta, V.K., Moradi, O., Tyagi, I., Agarwal, S., Sadegh, H., Shahryari-Ghoshekandi, R., Makhlouf, A.S.H., Goodarzi, M., Garshasbi, A., Study on the removal of heavy metal ions from industry waste by carbon nanotubes: Effect of the surface modification. Crit. Rev. Environ. Sci. Technol., 46, 2, 93–118, 2016.

      71. Santhosh, C., Velmurugan, V., Jacob, G., Jeong, S.K., Grace, A.N., Bhatnagar, A., Role of nanomaterials in water treatment applications: A review. Chem. Eng. J., 306, 1116–1137, 2016.

      72. Qu, L.L., Liu, Y.Y., Liu, M.K., Yang, G.H., Li, D.W., Li, H.T., Highly reproducible Ag NPs/CNT-intercalated GO membranes for enrichment and SERS detection of antibiotics. ACS Appl. Mater. Interfaces, 8, 41, 28180–28186, 2016.

      73. Kanhere, P. and Chen, Z., A review on visible light active perovskite-based photocatalysts. Molecules, 19, 12, 19995–20022, 2014.

      74. Zhu, J. and Zäch, M., Nanostructured materials for photocatalytic hydrogen production. Curr. Opin. Colloid Interface Sci., 14, 4, 260–269, 2009.

      75. Fujishima, A., Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 37–38, 1972.

      76. Zhou, M., Yu, J., Liu, S., Zhai, P., Jiang, L., Effects of calcination temperatures on photocatalytic activity of SnO 2/TiO 2 composite films prepared by an EPD method. J. Hazard. Mater., 154, 1, 1141–1148, 2008.

      77. Hattori, A., Tokihisa, Y., Tada, H., Ito, S., Acceleration of Oxidations and Retardation of Reductions in Photocatalysis of a TiO2/SnO2 Bilayer-Type Catalyst. J. Electrochem. Soc., 147, 6, 2279–2283, 2000.