Название | Green Energy |
---|---|
Автор произведения | Группа авторов |
Жанр | Физика |
Серия | |
Издательство | Физика |
Год выпуска | 0 |
isbn | 9781119760795 |
73. W. Li, Z. Wang, F. Deschler, S. Gao, R.H. Friend, A.K. Cheetham, Chemically diverse and multifunctional hybrid organic-inorganic perovskites, Nat. Rev. Mater. 2017. https://doi.org/10.1038/natrevmats.2016.99.
74. P.S. Whitfield, N. Herron, W.E. Guise, K. Page, Y.Q. Cheng, I. Milas,M.K. Crawford, Structures, phase transitions and tricriticalbehavior of the hybridperovskite methyl ammonium lead iodide, Sci. Rep. 2016. https://doi.org/10.1038/srep35685.
75. R. Santbergen, R.J.C. van Zolingen, The absorption factor of crystalline silicon PV cells: a numerical and experimental study, Sol. Energy Mater. Sol. Cells 92, 432-444, 2008. https://doi.org/10.1016/J.SOLMAT.2007.10.005.
76. C. Quarti, E. Mosconi, J.M. Ball, V. D’Innocenzo, C. Tao, S. Pathak, H.J. Snaith, A. Petrozza, F. De Angelis, Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells, Energy Environ. Sci. 2016. https://doi.org/10.1039/c5ee02925b.
77. N.K. Kumawat, A. Dey, A. Kumar, S.P. Gopinathan, K.L. Narasimhan, D. Kabra,Band gap tuning of CH 3 NH 3 Pb(Br 1e x Cl x) 3 hybrid perovskite for blueelectroluminescence, ACS Appl. Mater. Interfaces 7, 13119-13124, 2015. https://doi.org/10.1021/acsami.5b02159.
78. S.A. Kulkarni, T. Baikie, P.P. Boix, N. Yantara, N. Mathews, S. Mhaisalkar, Bandgap tuning of lead halide perovskites using a sequential deposition process, J. Mater.Chem. A. 2, 9221-9225, 2014. https://doi.org/10.1039/C4TA00435C.
79. A.M. Ganose, C.N. Savory, D.O. Scanlon, Beyondmethylammonium lead iodide:prospects for the emergent field of ns2 containing solar absorbers, Chem. Commun. 2017. https://doi.org/10.1039/c6cc06475b.
80. P. Umari, E. Mosconi, F. De Angelis, Relativistic GW calculations on CH3NH3PbI3and CH3NH3SnI3 perovskites for solar cell applications, Sci. Rep. 4, 4467, 2015. https://doi.org/10.1038/srep04467.
81. A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M.K. Nazeeruddin, M. Gratzel, F. De Angelis, Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedral tilting, Nano Lett. 14, 3608-3616, 2014. https://doi.org/10.1021/nl5012992.
82. T. Liu, Y. Zong, Y. Zhou, M. Yang, Z. Li, O.S. Game, K. Zhu, R. Zhu, Q. Gong, N.P. Padture, High-performance formamidinium-based perovskite solar cells viamicrostructure-mediated d-to-a phase transformation, Chem. Mater. 2017. https://doi.org/10.1021/acs.chemmater.7b00523.
83. X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S.M. Zakeeruddin, A. Hagfeldt, M. Gratzel, A vacuum flash-assisted solution process for high-efficiency large-areaperovskite solar cells, Science 353, 58-62, 2016. https://doi.org/10.1126/science.aaf8060.
84. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131, 6050-6051, 2009. https://doi.org/10.1021/ja809598r.
85. H.-S. Kim, C.-R.Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Gr€atzel, N.-G. Park, Lead iodideperovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep. 2, 591, 2012. https://doi.org/10.1038/srep00591.
86. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskitesensitized solar cells, Nature 499 316-319, 2013. https://doi.org/10.1038/nature12340.
87. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybridsolar cells based on meso-superstructuredorganometal halide perovskites, Science, 80, 2012. https://doi.org/10.1126/science.1228604.
88. Y. Fu, F. Meng, M.B. Rowley, B.J. Thompson, M.J. Shearer, D. Ma, R.J. Hamers,J.C. Wright, S. Jin, Solution growth of single crystal methylammonium lead halideperovskite nanostructures for optoelectronic and photovoltaic applications, J. Am. Chem. Soc. 137, 5810-5818, 2015. https://doi.org/10.1021/jacs.5b02651.
89. N. Yaghoobi, D. Saranin, A. L. Palma & A. Di Carlo, Perovskite solar cells. Solar Cells and Light Management, 163-228. 2020. doi:10.1016/ b978-0-08-102762-2.00005-7.
90. Q. Wali, F. J. Iftikhar, N. K. Elumalai, Y. Iqbal, S.Yousaf, S. Iqbal & R. Jose, Advances in stable and flexible perovskite solar cells. Current Applied Physics, 2020. doi:10.1016/j.cap.2020.03.007.
91. G.R.J. Artus, S. Jung, J. Zimmermann, H.-P.Gautschi, K. Marquardt, S. Seeger, Silicone nanofilaments and their application as superhydrophobic coatings, Adv. Mater. 20, 2758-2762, 2006.
92. S. Sahoo, S. Pradhan & S. Das, Superhydrophobic antireflective polymer coatings with improved solar cell efficiency. Superhydrophobic Polymer Coatings, 281–297, 2019. doi:10.1016/b978-0-12-816671-0.00013-8.
1 * Corresponding author: [email protected]
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.