Green Energy. Группа авторов

Читать онлайн.
Название Green Energy
Автор произведения Группа авторов
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119760795



Скачать книгу

photovoltaic cells, J. Am. Chem. Soc. 131, 6050-6051, 2009, https://doi.org/10.1021/ja809598r.

      46. National Renewable Energy Laboratory, Best Research-Cell Efficiency Chart jPhotovoltaic Research, NREL, 2018. www.nrel.gov/pv/cell-efficiency.html.

      47. M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, A.W.Y. Ho-Baillie, Solar cell efficiency tables (Version 53), Prog. Photovoltaics Res. Appl. 27, 3-12, 2019 https://doi.org/10.1002/pip.3102.

      49. N.Y. Nia, F. Matteocci, L. Cina, A. Di Carlo, High-efficiency perovskite solar cell based on poly(3-hexylthiophene): influence of molecular weight and mesoscopic scaffold layer, ChemSusChem 10, 3854-3860, 2017. https://doi.org/10.1002/cssc.201700635.

      50. M.K. Sardashti, M. Zendehdel, N.Y. Nia, D. Karimian, M. Sheikhi, High efficiency MAPbI 3 perovskite solar cell using a pure thin film of polyoxometalate as scaffold layer, ChemSusChem 10, 3773-3779, 2017. https://doi.org/10.1002/cssc.201701027.

      51. D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu, J. Feng, X. Ren, G. Fang, S. Priya,S. Liu, High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2, Nat. Commun. 9, 3239, 2018. https://doi.org/10.1038/s41467-018-05760-x.

      52. S. B. Babak Taheri1, NargesYaghoobi Nia, antonioagresti, sarapescetelli, Claudio ciceroni, antonioesau del riocastillo, luciocin a, A.D.C. Francesco bonaccorso, graphene-engineered automated sprayed mesoscopic structure for perovskite device scaling-up, 2D Mater, 2018. https://doi.org/10.1088/2053-1583/aad983 Manuscript.

      53. W. Nie, H. Tsai, J.-C.Blancon, F. Liu, C.C. Stoumpos, B. Traore, M. Kepenekian, O. Durand, C. Katan, S. Tretiak, J. Crochet, P.M. Ajayan, M. Kanatzidis, J. Even, A.D. Mohite, Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide, Adv. Mater. 30 1703879, 2018. https://doi.org/10.1002/adma.201703879.

      54. P. Meredith, A. Armin, Scaling of next generation solution processed organic and perovskite solar cells, Nat. Commun. 9, 5261, 2018. https://doi.org/10.1038/s41467-018-05514-9.

      55. N. Yaghoobi Nia, M. Zendehdel, L. Cina, F. Matteocci, A. Di Carlo, A crystal engineering approach forscalable perovskite solar cells and module fabrication: a full out of glove box procedure, J. Mater. Chem. A. 6 659-671, 2018. https://doi.org/10.1039/C7TA08038G.

      56. A.L. Palma, F. Matteocci, A. Agresti, S. Pescetelli, E. Calabro, L. Vesce, S. Christiansen, M. Schmidt, A. Di Carlo, Laser-patterning engineering for perovskite solar modules with 95% aperture ratio, IEEE J. Photovoltaics, 2017. https://doi.org/10.1109/JPHOTOV.2017.2732223.

      57. Y. Rong, Y. Ming, W. Ji, D. Li, A. Mei, Y. Hu, H. Han, Toward industrial-scale-production of perovskite solar cells: screen printing, slot-die coating, and emerging techniques, J. Phys. Chem. Lett. 9, 2707-2713, 2018. https://doi.org/10.1021/acs.jpclett.8b00912.

      58. F. Huang, M. Li, P. Siffalovic, G. Cao, J. Tian, From scalable solution fabrication of perovskite films towards commercialization of solar cells, Energy Environ. Sci. 12, 518-549, 2019. https://doi.org/10.1039/C8EE03025A.

      60. Z. Li, T.R. Klein, D.H. Kim, M. Yang, J.J. Berry, M.F.A.M. van Hest, K. Zhu, Scalable fabrication of perovskite solar cells, Nat. Rev. Mater. 3, 18017, 2018. https://doi.org/10.1038/natrevmats.2018.17.

      61. K. Hwang, Y.S. Jung, Y.J. Heo, F.H. Scholes, S.E. Watkins, J. Subbiah, D.J. Jones,D.Y. Kim, D. Vak, Toward large scale roll-to-roll production of fully printed perovskite solar cells, Adv. Mater. 27, 1241-1247, 2015. https://doi.org/10.1002/adma.201404598.

      62. Chen, Y., Meng, Q., Zhang, L., Han, C., Gao, H., Zhang. Y., Yan, H. SnO 2-based electron transporting layer materials for perovskite solar cells: A review of recent progress, Journal of Energy Chemistry 35, 144-167 2019.

      63. L.F. Schneemeyer, J.V. Waszczak, S.M. Zahorak, R.B. van Dover, T. Siegrist, Superconductivity in rare earth cup rate perovskites, Mater. Res. Bull. 1987. https://doi.org/10.1016/0025-5408(87)90211-X.

      64. T. He, Q. Huang, A.P. Ramirez, Y. Wang, K.A. Regan, N. Rogado,M.A. Hayward, M.K. Haas, J.S. Slusky, K. Inumara, H.W. Zandbergen, N.P. Ong, R.J. Cava, Superconductivity in the non-oxide perovskite MgCNi3, Nature 411, 54-56, 2001. https://doi.org/10.1038/35075014.

      65. M. Bazzan, C. Sada, Optical waveguides in lithium niobate: recent developments and applications, Appl. Phys. Rev. 2015. https://doi.org/10.1063/1.4931601.

      66. S.S. Shin, E.J. Yeom, W.S. Yang, S. Hur, M.G. Kim, J. Im, J. Seo, J.H. Noh, S. IlSeok, Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostableperovskite solar cells, Science 80, 2017. https://doi.org/10.1126/science.aam6620.

      67. H. Yokokawa, N. Sakai, T. Kawada, M. Dokiya, Thermodynamic stabilities of perovskite oxides for electrodes and other electrochemical materials, Solid State Ionics, 1992. https://doi.org/10.1016/0167-2738(92)90090-C.

      68. M. Gratzel, The rise of highly efficient and stable perovskite solar cells, Acc. Chem. Res. 50, 487-491, 2017. https://doi.org/10.1021/acs.accounts.6b00492.

      69. V.M. Goldschmidt, Die gesetze der Krystallochemie, Naturwissenschaften 14, 477-485, 1926. https://doi.org/10.1007/BF01507527.

      70. G. Kieslich, S. Sun, A.K. Cheetham, An extended Tolerance Factor approach for organic e inorganic perovskites, Chem. Sci. 6, 3430-3433, 2015. https://doi.org/10.1039/C5SC00961H.

      71. W. Travis, E.N.K. Glover, H. Bronstein, D.O. Scanlon, R.G. Palgrave, On the-application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system, Chem. Sci. 7, 4548-4556, 2016. https://doi.org/10.1039/c5sc04845a.